Convex optimization in image/signal processing

L. M. Briceño-Arias Universidad Técnica Federico Santa María

 $\mathrm{FGV}\ 2023$

L. M. Briceño-AriasUniversidad Técnica Federico Santa María

Signals and images

157	153	174	168	150	152	129	151	172	161	155	166	157	153	174	168	150	162	129	161	172	161	155	156
155	182	163						110	210	180	154	195	182	163	74	75	62	33	17	110	210	180	154
180	180								105	159	161	180	180	50	14	34	6	10	33	48	106	159	181
206	109	6	124	191	111	120	204	166	15	56	180	206	109	6	124	131	111	120	204	166	15	56	180
194	68	197	251	237	239	239	228	227			201	194	68	137	251	237	239	239	228	227	87	n	201
172	105	207	233	233	214	220	239	228	98		206	172	105	207	233	233	214	220	239	228	98	74	206
188		179	209	185	215	211	158	139			169	188	88	179	209	185	215	211	158	139	75	20	169
189	\$7	165		10	168	134					148	189	97	165	84	10	168	134	11	31	62	22	148
199	168	191	193	158	227	178	143	182	105		190	199	168	191	193	158	227	178	143	182	106	36	190
205	174	155	252	236	231	149	178	228			234	205	174	155	252	236	231	149	178	228	43	95	234
190	216	116	149	236	187		150			218	241	190	216	116	149	236	187	86	150	79	38	218	241
190	224	147	108	227	210	127	102		101	255	224	190	224	147	108	227	210	127	102	36	101	255	224
190	214	173		103	143	96			109	249	215	190	214	173	66	103	143	96	50	2	109	249	215
187	195	235		۱					217	255	211	187	196	236	75	1	81	47	0	6	217	255	211
183	202	237	145				108	200	138	243	235	183	202	237	145	0	0	12	108	200	138	243	236
195	206	123	207	177	121	123	200	175	13	95	218	196	206	129	207	177	121	123	200	175	18	96	218

æ

Denoising

3/80

L. M. Briceño-AriasUniversidad Técnica Federico Santa María.

Denoising and/or Deblurring

L. M. Briceño-AriasUniversidad Técnica Federico Santa María

Denoising models

- N: dimension (signal) or pixels (image $N = m \times n$).
- $z \in \mathbb{R}^N$: observed image/signal (noisy).
- $\overline{x} \in \mathbb{R}^N$: image/signal to recover.
- $\varepsilon \in \mathbb{R}^N$: additive noise (random gaussian variable).

$$\min_{x \in \mathbb{R}^N} \frac{1}{2} \|x - z\|_2^2 + \mathcal{R}(x)$$

- $||x||_2^2 = \sum_{i=1}^N |x_i|^2$.
- $\mathcal{R}: \mathbb{R}^N \to]-\infty, +\infty]$: regularization term depending on z.
- If $\mathcal{R} = 0$, the unique solution is x = z.

Deblurring/denoising models

- N: dimension (signal) or pixels (image $N = m \times n$).
- $\Phi: N \times N$ blur matrix.
- $z \in \mathbb{R}^N$: observed image/signal (noisy).
- $\overline{x} \in \mathbb{R}^N$: image/signal to recover.
- $\varepsilon \in \mathbb{R}^N$: additive noise (random Gaussian variable).

Deblurring/denoising optimization problem

$$z = \Phi \overline{x} + \varepsilon$$

$$\min_{x \in \mathbb{R}^N} \frac{1}{2} \|\Phi x - z\|_2^2 + \mathcal{R}(x)$$

• $\mathcal{R}: \mathbb{R}^N \to]-\infty, +\infty]$: regularization term depending on z.

• If $\mathcal{R} = 0$ and Φ is invertible, the unique solution is $x = \Phi^{-1}z$.

- 4 同 ト 4 ヨ ト 4 ヨ ト

Discrete gradient in regularizations

• In the case of signals $x \in \mathbb{R}^N$, the discrete gradient is

$$D = \begin{bmatrix} 0 & 0 & 0 & \cdots & 0 & 0 \\ -1 & 1 & 0 & \cdots & 0 & 0 \\ 0 & -1 & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & -1 & 1 \end{bmatrix}, \quad Dx = \begin{pmatrix} 0 \\ x_2 - x_1 \\ x_3 - x_2 \\ \vdots \\ x_N - x_{N-1} \end{pmatrix} \in \mathbb{R}^N.$$

• The discrete gradient operator in the case of images is

$$D = \begin{pmatrix} D_1 \\ D_2 \end{pmatrix},$$

where D_1 and D_2 are $N \times N$ real matrices considering horizontal and vertical differences at each pixel, respectively.

Discrete gradient in regularizations

Python. Dgrad.

L. M. Briceño-AriasUniversidad Técnica Federico Santa María.

Regularizations and main problem

Given $\lambda > 0$, in this lecture we will study images/signals whose Dx is small (piecewise constant).¹

- $\mathcal{R} = \lambda \| D \cdot \|_1$: TV- ℓ_1 regularization. \Rightarrow nonsmooth convex
- $\mathcal{R} = \lambda \|D \cdot \|_2^2$: TV- ℓ_2 regularization. \Rightarrow smooth convex

$$\mathcal{R} = g \circ D$$
, where $g \in \{\lambda \| \cdot \|_1, \lambda \| \cdot \|_2^2\}$

Main problem

$$\min_{x \in \mathbb{R}^N} \frac{F(x)}{2} = \frac{1}{2} ||Ax - z||_2^2 + g(Dx)$$

- A =Id if denoising. \Rightarrow strongly convex
- $A = \Phi$ if deblurring. \Rightarrow convex

$$\|x\|_{1} = \sum_{i=1}^{N} |x_{i}|$$

L. M. Briceño-AriasUniversidad Técnica Federico Santa María

イロト イポト イヨト イヨト

1 Motivation

- 2 Part I: Convex functions in image/signal processing
- **(3)** Part II: $TV-\ell_2$ regularization: smooth convex functions
- 4 Part III: TV- ℓ_1 regularization: nonsmooth convex functions

Part I: Convex functions in image/signal processing

- ① Existence and uniqueness
- **2** F smooth: gradient
 - $\bullet~F~{\rm convex}$
 - F strongly convex
- $\mathbf{3}$ F nonsmooth: subdifferential
 - Proximity operator
 - Examples

L. M. Briceño-AriasUniversidad Técnica Federico Santa María

Convex optimization problems

Problem (P)

 $\min_{x \in \mathbb{R}^N} F(x).$

- $F: \mathbb{R}^N \to \overline{\mathbb{R}} := \mathbb{R} \cup \{+\infty\}$ is
 - convex : $(\forall x, y \in \mathbb{R}^N)(\forall \lambda \in [0, 1])$ $F(x + \lambda(y - x)) \le F(x) + \lambda(F(y) - F(x)).$
 - lower semicontinuous (l.s.c): $(\forall \gamma > \inf F) \quad \{x \in \mathbb{R}^N \mid F(x) \le \gamma\}$ is closed.
 - proper: F is not always $+\infty$ and never $-\infty$.
- $\Gamma_0(\mathbb{R}^N)$: Class of functions satisfying above conditions.

イロト イポト イヨト イヨト

Examples of functions in $\Gamma_0(\mathbb{R}^N)$

• Differentiable convex functions: $x \mapsto e^x, x \mapsto ||x||_2^2,...$

Part II

• Non-smooth convex functions: $x \mapsto |x|$, $x \mapsto \max\{0, x\}, x \mapsto \|x\|_1...$

Motivation

Part I

(日) (同) (三)

Part III

Part I P

Part II

Part III

Examples of functions in $\Gamma_0(\mathbb{R}^N)$

• Discontinuous convex functions: $C \subset \mathbb{R}^N$ is closed and convex.

• Constrained convex functions: Let $f \in \Gamma_0(\mathbb{R}^N)$ and C be closed and convex:

$$F(x) = \begin{cases} f(x), & \text{if } x \in C \\ +\infty, & \text{otherwise.} \end{cases} = f(x) + \iota_C(x)$$

Motivation

Examples of functions in $\Gamma_0(\mathbb{R}^N)$

- If f and g are in $\Gamma_0(\mathbb{R}^N)$, we have $f + g \in \Gamma_0(\mathbb{R}^N)$.
- If $g \in \Gamma_0(\mathbb{R}^M)$, and $L \colon \mathbb{R}^N \to \mathbb{R}^M$ is linear $(M \times N \text{ matrix})$, then $g \circ L \in \Gamma_0(\mathbb{R}^N)$. Dem.
- In particular,

$$||x||_1 = |x_1| + |x_2| + \dots + |x_N|$$
 and $||x||_2^2 = x_1^2 + x_2^2 + \dots + x_N^2$
are in $\Gamma_0(\mathbb{R}^N)$ Dem. $N = 1$.

Exercise

$$(\forall \lambda \in [0,1]) \quad \|(1-\lambda)x + \lambda y\|_2^2 = (1-\lambda)\|x\|_2^2 + \lambda \|y\|_2^2 - \lambda(1-\lambda)\|x-y\|_2^2.$$

R = g ∘ L and f: x ↦ ¹/₂ ||Ax - z||²/₂ are in Γ₀(ℝ^N).
F: x ↦ f(x) + g(Lx) is also in Γ₀(ℝ^N).

Existence of solutions

Let $F \in \Gamma_0(\mathbb{R}^N)$ be coercive, i.e.,

$$\lim_{\|x\|\to+\infty} F(x) = +\infty.$$

 $\text{Then } \mathop{\arg\min} F = \left\{ x^* \in \mathbb{R}^N \ | \ (\forall x \in \mathbb{R}^N) \ F(x^*) \leq F(x) \right\} \neq \varnothing.$

Dem. We have

$$\arg\min F = \bigcap_{\gamma > \inf F} \left\{ x \in \mathbb{R}^N \mid F(x) \le \gamma \right\}$$

and coercivity implies that $\{x \in \mathbb{R}^N \mid F(x) \leq \gamma\}$ is bounded (and closed). Intersection of nested nonempty compact sets is nonempty.

Image: A image: A

Strong convexity and uniqueness of solutions

- F is β -strongly convex for some $\beta > 0$ if $F \frac{\beta}{2} \| \cdot \|_2^2$ is convex.
- Strongly convex functions are coercive.

Exercise

$$\begin{split} F \text{ is } \beta \text{-strongly convex} &\Leftrightarrow (\forall x, y \in \mathbb{R}^N)(\forall \lambda \in [0, 1]) \\ F(x + \lambda(y - x)) \leq F(x) + \lambda(F(y) - F(x)) - \frac{\beta}{2}\lambda(1 - \lambda) \|x - y\|_2^2. \end{split}$$

Uniqueness of solutions

Suppose that $F \in \Gamma_0(\mathbb{R}^N)$ is β -strongly convex ($\beta > 0$). Then arg min F is a singleton.

Dem. Existence is ok. Suppose that $\{x^*, y^*\} \subset \arg\min F, x^* \neq y^*$. $F(x^* + \lambda(y^* - x^*)) \leq F(x^*) + \lambda(F(y^*) - F(x^*)) - \frac{\beta}{2}\lambda(1 - \lambda)\|x^* - y^*\|_2^2$

イロト イポト イヨト イヨト

$$\langle F(x^*) = F(y^*) \Rightarrow \Leftarrow \square$$

F differentiable

• For all
$$i \in \{1, ..., N\}$$
, let $e^i = (0, ..., \underbrace{1}_i, ..., 0)^\top \in \mathbb{R}^N$.

• For all $x \in \mathbb{R}^N$ and $i \in \{1, \dots, N\}$,

$$\frac{\partial F(x)}{\partial x_i} = \lim_{t\to 0} \frac{F(x+te^i)-F(x)}{t} \ \text{when the limit exists.}$$

∇F(x) = (∂F(x)/∂x₁,..., ∂F(x)/∂x_N)^T ∈ ℝ^N: gradient of F at x.
F is differentiable: ∂F(x)/∂x₁,..., ∂F(x)/∂x_N are continuous.

Exercises

- Prove that $F: x \mapsto ||x||_2^2/2$ is differentiable and $\nabla F(x) = x$.
- Suppose that F is differentiable. Prove that

$$(\forall h \in \mathbb{R}^N)$$
 $\lim_{t \to 0^+} \frac{F(x+th) - F(x)}{t} = \nabla F(x)^\top h.$

- Suppose that F is differentiable and let $x^* \in \arg \min F$. Prove that $\nabla F(x^*) = 0$.
- (Chain's rule) Suppose that
 - $f \colon \mathbb{R}^N \to \mathbb{R}$ and $g \colon \mathbb{R}^M \to \mathbb{R}$ are differentiable.
 - L is a $M \times N$ real matrix.
 - $F = f + g \circ L$.

Prove that F is differentiable and

$$(\forall x \in \mathbb{R}^N) \quad \nabla F(x) = \nabla f(x) + L^\top \nabla g(Lx).$$

Part I Part II Part III

F differentiable and convex

$$(\forall x \in \mathbb{R}^N)(\forall y \in \mathbb{R}^N) \quad \begin{cases} F(x) + \nabla F(x)^\top (y - x) \le F(y) \\ \left(\nabla F(x) - \nabla F(y)\right)^\top (x - y) \ge 0. \end{cases}$$

Dem. Let x and y in \mathbb{R}^N . From convexity, we have, for every $\lambda \in [0,1],$

$$\underbrace{\frac{F(x + \lambda(y - x)) - F(x)}{\lambda}}_{\rightarrow \nabla F(x)^{\top}(y - x)} \leq F(y) - F(x). \square$$
Previous property implies
Fermat's Theorem (diff)
$$x^* \in \arg\min F \iff \nabla F(x^*) = 0$$

F

${\cal F}$ differentiable and strongly convex

Since $F - \frac{\beta}{2} \| \cdot \|_2^2$ is convex and differentiable:

Exercise

Part I

Motivation

Suppose that F is differentiable. Prove that F is $\beta\text{-strongly convex}\Leftrightarrow$

Part II

$$(\forall x \in \mathbb{R}^N)(\forall y \in \mathbb{R}^N) \quad \begin{cases} F(x) + \nabla F(x)^\top (y - x) + \frac{\beta}{2} \|x - y\|_2^2 \le F(y) \\ \left(\nabla F(x) - \nabla F(y)\right)^\top (x - y) \ge \beta \|x - y\|_2^2 \end{cases}$$

Part III

Example

- Suppose that $\overline{x} = 0 \in \mathbb{R}^N$ is the signal to be recovered.
- $z = \overline{x} + \varepsilon = \varepsilon \in \mathbb{R}^N$ is a Gaussian noise (known).
- $\lambda \ge 0$

Denoising with ℓ_2 regularization

$$\min_{x \in \mathbb{R}^N} F(x) = \frac{1}{2} \|x - z\|_2^2 + \lambda \|x\|_2^2$$

 $F \in \Gamma_0(\mathbb{R}^N)$ and is $(\lambda + 1/2)$ -strongly convex. Therefore, there exists a unique solution x^* . By Fermat's Theorem (diff)

$$\{x^*\} = \arg\min F \iff 0 = \nabla F(x^*) = x^* - z + \lambda x^*$$

$$\Leftrightarrow x^* = \frac{z}{1+\lambda}.$$

Python. Signal denoising.

F convex nonsmooth

Subdifferential of F

$$\partial F \colon \mathbb{R}^N \to 2^{\mathbb{R}^N} = \mathcal{P}(\mathbb{R}^N)$$
$$x \mapsto \left\{ u \in \mathbb{R}^N \mid (\forall y \in \mathbb{R}^N) \ F(x) + u^\top (y - x) \le F(y) \right\}$$

Subdifferential properties

Exercise

If F is differentiable, then, for every $x \in \mathbb{R}^N$, $\partial F(x) = \{\nabla F(x)\}$.

Dem. Let $u \in \partial F(x)$, let $h \in \mathbb{R}^N$, and let t > 0. Set y = x + th

$$u^{\top}h \leq \frac{F(x+th) - F(x)}{t} \rightarrow \nabla F(x)^{\top}h \Rightarrow (u - \nabla F(x))^{\top}h \leq 0. \quad \Box$$

Monotonicity of ∂F

For every x and y in \mathbb{R}^N , $u \in \partial F(x)$, and $v \in \partial F(y)$,

$$(u-v)^{\top}(x-y) \ge 0.$$

When F is differentiable, it reduces to monotonicity of the gradient.

イロト イポト イヨト イヨト

F convex

 $\bullet\,$ If F is convex and non necessarily differentiable, we have

Fermat's Theorem

 $x \in \arg\min F \quad \Leftrightarrow \quad 0 \in \partial F(x)$

Dem. $0 \in \partial F(x) \iff (\forall y \in \mathbb{R}^N) \quad F(x) + 0^\top (y - x) \le F(y)$

Moreau-Rockafellar's Theorem

Suppose that $g: \mathbb{R}^M \to \mathbb{R}$ is continuous, L is a $M \times N$ real matrix, and set $F = f + g \circ L$. Then^{*a*}

$$(\forall x \in \mathbb{R}^N) \quad \partial F(x) = \partial f(x) + L^\top \partial g(Lx).$$

 ${}^{a}L(C) = \left\{ Lx \mid x \in C \right\}.$

Dem. Hahn-Banach's Theorem.

F convex nonsmooth

If $F = f + g \circ L$ and f and g are differentiable, then F is differentiable and Moreau-Rockafellar's Theorem becomes

$$(\forall x \in \mathbb{R}^N) \quad \{\nabla F(x)\} = \{\nabla f(x)\} + L^\top \{\nabla g(Lx)\},\$$

which is equivalent to chain's rule.

Proximity operator

Suppose that $F \in \Gamma_0(\mathbb{R}^N)$.

Proximity operator of F $\operatorname{prox}_F \colon x \mapsto \operatorname{argmin}_{y \in \mathbb{R}^N} F(y) + \frac{1}{2} \|y - x\|_2^2$

Example: $F = \iota_C$ Projection $\operatorname{prox}_{\iota_C} = P_C x = \operatorname{argmin}_{y \in C} \frac{1}{2} ||y - x||_2^2.$

L. M. Briceño-AriasUniversidad Técnica Federico Santa María

イロト イポト イヨト イヨト

Proximity operator

Part I

Motivation

• Since $F + \| \cdot -x \|_2^2/2 \in \Gamma_0(\mathbb{R}^N)$ is strongly convex, $\arg \min(F + \| \cdot -x \|_2^2/2) = \{p^*\}$ and prox_F is well defined.

Part II

• By Fermat's and Moreau-Rockafellar's Theorems:

$$0 \in \partial(F + \|\cdot -x\|_2^2/2)(p^*) = \partial F(p^*) + \{p^* - x\}$$

• Then $p^* = \operatorname{prox}_F(x)$ is the unique solution to the inclusion

$$x \in p^* + \partial F(p^*) = (\mathrm{Id} + \partial F)(p^*)$$

or, equivalently,

$$\operatorname{prox}_F(x) = (\operatorname{Id} + \partial F)^{-1}(x).$$

Part III

Example: smooth thresholder

Set $\lambda > 0$ and $F = \lambda |\cdot|$.

Proximity operator of $\lambda | \cdot |$

$$p = \operatorname{prox}_{\lambda|\cdot|} x \quad \Leftrightarrow \quad x - p \in \lambda \partial|\cdot|(p) = \begin{cases} \{\lambda\}, & \text{if } p > 0; \\ [-\lambda, \lambda], & \text{if } p = 0; \\ \{-\lambda\}, & \text{if } p < 0. \end{cases}$$

• If
$$p = 0$$
, then $x - p = x \in [-\lambda, \lambda]$.

$$\operatorname{prox}_{\lambda|\cdot|} x = \begin{cases} x - \lambda, & \text{if } x > \lambda; \\ 0, & \text{if } x \in [-\lambda, \lambda]; = \operatorname{sign}(x) \max\{0, |x| - \lambda\}. \\ x + \lambda, & \text{if } x < -\lambda \end{cases}$$

Example: smooth thresholder

L. M. Briceño-AriasUniversidad Técnica Federico Santa María

Exercise

For every $i \in \{1, ..., N\}$, let $f_i \in \Gamma_0(\mathbb{R})$. Define $F : \mathbb{R}^N \to \mathbb{R} \cup \{+\infty\}$ as

$$(\forall x = (x_i)_{1 \le i \le N} \in \mathbb{R}^N) \quad F(x) = \sum_{i=1}^N f_i(x_i).$$

Prove that

$$(\forall x = (x_i)_{1 \le i \le N} \in \mathbb{R}^N) \quad \operatorname{prox}_F x = (\operatorname{prox}_{f_i} x_i)_{1 \le i \le N}.$$

《口》《聞》《臣》《臣》

Example

- Suppose that $\overline{x} = 0 \in \mathbb{R}^N$ is the signal to be recovered (sparse).
- $z = \overline{x} + \varepsilon = \varepsilon \in \mathbb{R}^N$ is a Gaussian noise (known).

•
$$\lambda \ge 0$$

Denoising with ℓ_1 regularization

$$\min_{x \in \mathbb{R}^N} F(x) = \frac{1}{2} \|x - z\|_2^2 + \lambda \|x\|_1$$

Since F is strongly convex, there exists a unique solution x^* . By Fermat's Theorem and $\lambda \| \cdot \|_1 \colon x \mapsto \sum_{i=1}^N \lambda |x_i|$, we have

$$\{x^*\} = \arg\min F \iff x^* = \operatorname{prox}_{\lambda \|\cdot\|_1} z = (\operatorname{prox}_{\lambda \|\cdot\|_1} z_i)_{1 \le i \le N}.$$

Python. Signal denoising.

1 Motivation

- 2 Part I: Convex functions in image/signal processing
- **(3)** Part II: $TV-\ell_2$ regularization: smooth convex functions
- 4 Part III: TV- ℓ_1 regularization: nonsmooth convex functions

Part II: $TV-\ell_2$ regularization: smooth convex functions.

- **1** TV- ℓ_2 denoising
 - Problem
 - Fixed point theory: Banach-Picard's theorem and strict contractions
 - Application: Gradient algorithm
- **2** TV- ℓ_2 deblurring
 - Problem
 - Fixed point theory: Opial's Lemma and averaged nonexpansive ops.
 - Application: Gradient algorithm
- 3 Appendix

TV- ℓ_2 denoising

- Suppose that $\overline{x} \in \mathbb{R}^N$ is the signal/image to be recovered (piecewise constant).
- $z = \overline{x} + \varepsilon$, where ε is a Gaussian noise, and $\lambda > 0$.

Denoising with TV- ℓ_2 regularization

$$\min_{x \in \mathbb{R}^N} F(x) = \frac{1}{2} \|x - z\|_2^2 + \lambda \|Dx\|_2^2$$

Since ${\cal F}$ is differentiable and 1-strongly convex, Fermat's theorem and chain's rule yield

$$\begin{split} \{x^*\} &= \arg\min F \iff 0 = x^* - z + \lambda D^\top D x^* = \nabla F(x^*) \\ \Leftrightarrow &z = (\mathrm{Id} + \lambda D^\top D) x^* \\ \Leftrightarrow &x^* = (\mathrm{Id} + \lambda D^\top D)^{-1} z \end{split}$$

 $(\mathrm{Id} + \lambda D^{\top}D)^{-1}$ costly if N large (Python. Signal denoising.) \Rightarrow Algorithms ! vation Part I Part II Par

Part III

From Fermat to fixed points

• F differentiable and convex and $\gamma > 0$.

$$\begin{aligned} x^* \in \arg\min F & \Leftrightarrow & 0 = \nabla F(x^*) \\ & \Leftrightarrow & x^* = x^* - \gamma \nabla F(x^*) \\ & \Leftrightarrow & x^* = G_{\gamma F} x^* \end{aligned}$$

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ 二圓 - ∽��?
Part II

Banach-Picard's theorem

Definition

Let L > 0 and let $T \colon \mathbb{R}^N \to \mathbb{R}^N$.

- T is *L*-Lipschitz continuous if $(\forall x, y \in \mathbb{R}^N) ||Tx - Ty||_2 \le L||x - y||_2.$
- T is a strict contraction if it is L-Lipschitz with $L \in [0, 1[$.
- Fix $T = \{x \in \mathbb{R}^N \mid x = Tx\}$: fixed points of T.

Banach-Picard's theorem

- Suppose that $T : \mathbb{R}^N \to \mathbb{R}^N$ is a strict contraction with constant $L \in [0, 1[$.
- Let $x_0 \in \mathbb{R}^N$ and $(\forall n \in \mathbb{N})$ $x_{n+1} = Tx_n$.

Then Fix $T = \{x^*\}$ and $(\forall n \in \mathbb{N}) ||x_n - x^*||_2 \leq L^n ||x_0 - x^*||_2$. Hence, $x_n \to x^*$ with linear convergence rate L. Motivation Part I

Proof of Banach-Picard's Theorem

Dem. For every m > n,

$$\begin{aligned} \|x_m - x_n\|_2 &\leq \|x_m - x_{m-1}\|_2 + \dots + \|x_{n+1} - x_n\|_2 \\ &\leq \|Tx_{m-1} - Tx_{m-2}\|_2 + \dots + \|Tx_n - Tx_{n-1}\|_2 \\ &\leq (L^{m-2} + \dots + L^{n-1})\|x_1 - x_0\|_2 \\ &= (L^{n-1} - L^{m-1})/(1 - L)\|x_1 - x_0\|_2 \to 0, m, n \to +\infty \end{aligned}$$

• $(x_n)_{n \in \mathbb{N}}$ is a Cauchy sequence, hence it converges to x^* and $\|x^* - Tx^*\|_2 \le \|x^* - x_n\|_2 + \|Tx_{n-1} - Tx^*\|_2$ $\le \|x^* - x_n\|_2 + \|x_{n-1} - x^*\|_2 \to 0.$

• Then $x^* \in \operatorname{Fix} T$. Uniqueness (exercise).

•
$$||x_n - x^*||_2 = ||Tx_{n-1} - Tx^*||_2 \le L||x_{n-1} - x^*||_2 \le \dots \le L^n ||x_0 - x^*||_2$$
. \Box

$G_{\gamma F}$ strict contraction

Theorem

Suppose that

- F is differentiable, ρ -strongly convex,
- ∇F is *L*-Lipschitz continuous,
- $0 < \gamma < \frac{2}{L}$.

Then, $G_{\gamma F}$ is $r_G(\gamma)$ -strict contraction, where

$$r_G(\gamma) = \max\{|1 - \gamma \rho|, |1 - \gamma L|\} \in [0, 1[.$$

Moreover, $r_G(\frac{2}{L+\rho}) = \min_{\gamma>0} r_G(\gamma) = \frac{L-\rho}{L+\rho}$.

Dem. See Appendix.

- 4 同 ト 4 ヨ ト 4 ヨ ト

Motivation

Part I

Part II

Part III

Application: TV- ℓ_2 denoising

Denoising with TV- ℓ_2 regularization

$$\min_{\in \mathbb{R}^N} F(x) = \frac{1}{2} \|x - z\|_2^2 + \lambda \|Dx\|_2^2$$

• $\nabla F: x \mapsto x - z + \lambda D^{\top} Dx$ is $(1 + \lambda \|D\|_2^2)$ -Lipschitz cont.²

• F is 1-strongly convex.

• If
$$\gamma \in \left]0, 2/(2 + \lambda \|D\|_2^2) \left[, G_{\gamma F} = \mathrm{Id} - \gamma \nabla F \text{ is a} \right]$$

$$\max\{|1 - \gamma|, |1 - \gamma(1 + \lambda \|D\|_2^2)|\} \text{- strict contraction.}$$
$$r_G(\gamma)$$

Gradient algorithm

$$(\forall n \in \mathbb{N}) \quad x_{n+1} = x_n - \gamma (x_n - z + \lambda D^\top D x_n).$$

Then $||x_n - x^*|| \le r_G(\gamma)^n ||x_0 - x^*||.$

Python. Signal-TV-l2-grad-theo-vs-num & Image#

$${}^2\|D\|_2 = \max_{\|x\|=1} \|Dx\|_2 = \sqrt{\lambda_{\max}(D^\top D)}. \quad \text{ for all } x \in \mathbb{R} \text{ for all } x$$

TV- ℓ_2 deblurring

- Suppose that $\overline{x} \in \mathbb{R}^N$ is the signal/image to be recovered (piecewise constant).
- $z = \Phi \overline{x} + \varepsilon$, where $\varepsilon \in \mathbb{R}^N$ is a Gaussian noise and Φ is a blur operator.

Deblurring with TV- ℓ_2 regularization

$$\min_{x \in \mathbb{R}^N} F(x) = \frac{1}{2} \|\Phi x - z\|_2^2 + \lambda \|Dx\|_2^2$$

Since F is differentiable and convex (not strongly convex unless Φ injective), Fermat's theorem and chain's rule yield

$$\begin{split} x^* \in \arg\min F &\Leftrightarrow 0 = \Phi^\top (\Phi x^* - z) + \lambda D^\top D x^* = \nabla F(x^*) \\ &\Leftrightarrow \Phi^\top z = (\Phi^\top \Phi + \lambda D^\top D) x^* \\ &\Leftrightarrow x^* = (\Phi^\top \Phi + \lambda D^\top D)^{-1} \Phi^\top z \end{split}$$

 $(\Phi^{\top}\Phi + \lambda D^{\top}D)^{-1} \text{ difficult/costly} \Rightarrow \text{Algorithms} ! \quad \exists \quad \forall \in \mathbb{R}$

Gradient operator without strong conv.

 $\bullet\,$ Since F is differentiable and convex, we already know that

 $x^* \in \arg\min F \quad \Leftrightarrow \quad x^* \in \operatorname{Fix} G_{\gamma F} = (\operatorname{Id} - \gamma \nabla F)$

- Since F is not strongly convex, $G_{\gamma F}$ is no longer a strict contraction and Banach-Picard's theorem does not guarantee the convergence of the gradient method.
- Still, we have (see Appendix)

Baillon-Haddad (1977)

- $F \colon \mathbb{R}^N \to \mathbb{R}$ be convex differentiable.
- ∇F is *L*-Lipschitz continuous (L > 0).

Then, for all x and y in \mathbb{R}^N , $(\nabla F(x) - \nabla F(y))^\top (x - y) \ge \frac{1}{L} \|\nabla F(x) - \nabla F(y)\|^2.$

Gradient operator without strong conv.

$$\begin{split} \|G_{\gamma F}x - G_{\gamma F}y\|_{2}^{2} &= \|x - y\|_{2}^{2} + \gamma^{2} \|\nabla F(x) - \nabla F(y)\|_{2}^{2} \\ &- 2\gamma (\nabla F(x) - \nabla F(y))^{\top} (x - y) \\ &\leq \|x - y\|_{2}^{2} - \gamma \Big(\frac{2}{L} - \gamma\Big) \|\nabla F(x) - \nabla F(y)\|_{2}^{2} \\ &= \|x - y\|_{2}^{2} - \Big(\frac{1 - \frac{L\gamma}{2}}{\frac{L\gamma}{2}}\Big) \|\underbrace{\gamma \nabla F}_{\mathrm{Id}-G_{\gamma F}}(x) - \underbrace{\gamma \nabla F}_{\mathrm{Id}-G_{\gamma F}}(y)\|_{2}^{2} \end{split}$$

Definition

T is α -averaged nonexpansive $(\alpha \in]0, 1[)$ if for every $x, y \in \mathbb{R}^N$, $\|Tx - Ty\|_2^2 \le \|x - y\|_2^2 - \frac{1 - \alpha}{\alpha} \|(\mathrm{Id} - T)x - (\mathrm{Id} - T)y\|_2^2$. In particular, T is nonexpansive (i.e., 1-Lipschitz cont.)

• Then $G_{\gamma F}$ is $L\gamma/2$ -averaged nonexpansive if $0 < \gamma < 2/L$.

Fixed point convergence: averaged nonexpansive

Theorem

- T is α -averaged nonexpansive with Fix $T \neq \emptyset$.
- Let $x_0 \in \mathbb{R}^N$ and $(\forall n \in \mathbb{N})$ $x_{n+1} = Tx_n$.

Then, there exists $x^* \in \operatorname{Fix} T$ such that $x_n \to x^*$.

Dem.

• For every $x^* \in Fix T$ and $n \in \mathbb{N}$, the av. nonexpansive property implies

$$\|x_{n+1} - x^*\|_2^2 = \|Tx_n - Tx^*\|_2^2 \le \|x_n - x^*\|_2^2 - \frac{1 - \alpha}{\alpha} \|Tx_n - x_n\|_2^2.$$

• We obtain that $(||x_n - x^*||_2)_{n \in \mathbb{N}}$ is decreasing and bounded from below (by 0). Thus,

(1)

$$(\forall x^* \in \operatorname{Fix} T) (||x_n - x^*||_2)_{n \in \mathbb{N}}$$
 converges.

Part I

Fixed point convergence: averaged nonexpansive

• As a by-product we obtain $(1-\alpha)/\alpha \|Tx_n - x_n\|_2^2 \le \|x_n - x^*\|_2^2 - \|x_{n+1} - x^*\|_2^2$ and

$$\frac{1-\alpha}{\alpha} \sum_{n=0}^{N} \|Tx_n - x_n\|_2^2 \le \|x_0 - x^*\|_2^2 - \|x_{N+1} - x^*\|_2^2$$

- Hence, the series $\sum_{n\geq 0} ||Tx_n x_n||_2^2$ converges implying $x_n Tx_n \to 0$.
- Since $(x_{n_k})_{n \in \mathbb{N}}$ is bounded, let y^* be any accumulation point, i.e., $x_{n_k} \to y^*$. Since T is 1-Lipschitz,

$$\begin{aligned} \|x_{n_{k}} - y^{*}\|_{2}^{2} + \|y^{*} - Ty^{*}\|_{2}^{2} + 2(y^{*} - Ty^{*})^{\top}(x_{n_{k}} - y^{*}) \\ &= \|x_{n_{k}} - Ty^{*}\|_{2}^{2} \\ &= \|x_{n_{k}} - Tx_{n_{k}}\|_{2}^{2} + \|Tx_{n_{k}} - Ty^{*}\|_{2}^{2} + 2(x_{n_{k}} - Tx_{n_{k}})^{\top}(Tx_{n_{k}} - Ty^{*}) \\ &\leq \underbrace{\|x_{n_{k}} - Tx_{n_{k}}\|_{2}^{2}}_{\rightarrow 0} + \|x_{n_{k}} - y^{*}\|_{2}^{2} + 2\underbrace{(x_{n_{k}} - Tx_{n_{k}})^{\top}(Tx_{n_{k}} - Ty^{*})}_{\text{bounded}} \end{aligned}$$

Motivation

Fixed point convergence: averaged nonexpansive

(2)

Motivation

Any accumulation point of $(x_n)_{n \in \mathbb{N}}$ is in Fix T.

- With (1) and (2), we can conclude the uniqueness of the accumulation point.³
- Suppose that $x_{n_k} \to x^*$ and $x_{n_m} \to y^*$.

• (2)
$$\Rightarrow x^*$$
 and y^* are in Fix T.
• (1) $\Rightarrow ||x_n - x^*||_2 \to L_1$ and $||x_n - y^*||_2 \to L_2$.
• $\underbrace{||x_n - x^*||_2^2}_{\to L_1^2} = \underbrace{||x_n - y^*||_2^2}_{\to L_2^2} + ||y^* - x^*||_2^2 + 2(x_n - y^*)^\top (y^* - x^*)$
• $(y^* - x^*)^\top x_n \to L = \frac{1}{2}(L_1^2 - L_2^2 - ||y^* - x^*||_2^2) + (y^* - x^*)^\top y^*$.
• $(y^* - x^*)^\top x^* \xleftarrow[n=n_k] (y^* - x^*)^\top x_n \xrightarrow[n=n_m]{} (y^* - x^*)^\top y^*$
• $||y^* - x^*||_2^2 = 0 \Rightarrow x^* = y^*$.

Application: $TV-\ell_2$ deblurring

Deblurring with TV- ℓ_2 regularization

$$\min_{x \in \mathbb{R}^N} F(x) = \frac{1}{2} \|\Phi x - z\|_2^2 + \lambda \|Dx\|_2^2$$

- F convex and differentiable.
- $\nabla F : x \mapsto \Phi^{\top}(\Phi x z) + \lambda D^{\top} Dx$ is *L*-Lipschitz continuous, where $L = \|\Phi^{\top}\Phi + \lambda D^{\top}D\|_2 \le \|\Phi\|_2^2 + \lambda \|D\|_2^2$.
- For $\gamma \in \left]0, \frac{2}{L}\right[, G_{\gamma F} \text{ is } \frac{L\gamma}{2}\text{-averaged nonexpansive.}$

• Fix
$$G_{\gamma F} = \arg \min F \neq \emptyset$$
. Why ?

Gradient algorithm

$$(\forall n \in \mathbb{N}) \quad x_{n+1} = x_n - \gamma \big(\Phi^\top (\Phi x_n - z) + \lambda D^\top D x_n \big).$$

There exists $x^* \in \arg \min F$ such that $x_n \to x^*$.

Python. TV-l2-image-deblurring-l1

(日) (同) (三)

Appendix: Enhanced Baillon-Haddad⁴

Theorem

Let $F\colon \mathbb{R}^N\to \mathbb{R}$ be convex and differentiable. Then, the following are equivalent:

- **1** ∇F is *L*-Lipschitz continuous.
- $(\forall x, y \in \mathbb{R}^N) \quad F(x) \le F(y) + \nabla F(y)^\top (x y) + \frac{L}{2} \|x y\|_2^2.$
- $(\forall x, y \in \mathbb{R}^N) \quad (\nabla F(x) \nabla F(y))^\top (x y) \le L ||x y||_2^2.$
- $\label{eq:started} \textbf{(} \forall x,y \in \mathbb{R}^N) \quad (\nabla F(x) \nabla F(y))^\top (x-y) \geq \frac{1}{L} \|\nabla F(x) \nabla F(y)\|_2^2.$

イロト イヨト イヨト

⁴see, e.g. Bauschke–Combettes (2017)

Appendix: Enhanced Baillon–Haddad $(1 \Rightarrow 2 \& 2 \Leftrightarrow 3)$

Dem. $1 \Rightarrow 2$: Given x and y in \mathbb{R}^N , define $\phi: t \mapsto F(y + t(x - y))$, which is differentiable, $\phi'(t) = \nabla F(y + t(x - y))^\top (x - y)$ (exercise), $\phi(0) = F(y)$ and $\phi(1) = F(x)$. Hence, from C-S, Lipschitz cont., and FTC we have

$$\begin{split} F(x) - F(y) &= \int_0^1 \nabla F(y + t(x - y))^\top (x - y) dt \\ &= \int_0^1 \nabla F(y + t(x - y) - \nabla F(y))^\top (x - y) dt + \nabla F(y)^\top (x - y) \\ &\leq \int_0^1 \|\nabla F(y + t(x - y) - \nabla F(y)\|_2 \|x - y\|_2 dt + \nabla F(y)^\top (x - y) \\ &\leq L \|x - y\|_2^2 \int_0^1 t dt + \nabla F(y)^\top (x - y) \\ &= \frac{L}{2} \|x - y\|_2^2 + \nabla F(y)^\top (x - y). \end{split}$$

Dem. 2 \Leftrightarrow 3: Change the roles of x and y and sum. exercise: \Leftarrow

Motivation Part I Part II Part III Part III

Appendix: Enhanced Baillon–Haddad $(3 \Rightarrow 4 \& 4 \Rightarrow 1)$

 $3 \Rightarrow 4$: Using 2 and convexity we have, for every x, y, z in \mathbb{R}^N

$$\begin{aligned} F(x) + \nabla F(x)^{\top}(z-x) &\leq F(z) \\ F(z) &\leq F(y) + \nabla F(y)^{\top}(z-y) + \frac{L}{2} \|z-y\|_2^2 \end{aligned}$$

which leads to

$$F(x) + \nabla F(x)^{\top} (y - x) \le F(y) + \underbrace{(\nabla F(y) - \nabla F(x))^{\top} (z - y) + \frac{L}{2} \|z - y\|_{2}^{2}}_{\varphi(z)}.$$

Since $\varphi \colon \mathbb{R}^N \to \mathbb{R}$ is strongly convex and differentiable, admits a unique minimizer satisfying (Fermat)

$$0 = \nabla \varphi(z^*) = \nabla F(y) - \nabla F(x) + L(z^* - y) \iff z^* - y = \frac{1}{L} (\nabla F(x) - \nabla F(y))$$

obtaining $F(x) + \nabla F(x)^{\top}(y-x) \leq F(y) - \frac{1}{2L} \|\nabla F(x) - \nabla F(y)\|_2^2$. Changing the roles of x and y, the result follows.

$$4 \Rightarrow 1$$
: C-S.

イロト イボト イヨト イヨト

$G_{\gamma F}$ strict contraction

Theorem

Suppose that

- F is differentiable, ρ -strongly convex,
- ∇F is *L*-Lipschitz continuous,
- $0 < \gamma < \frac{2}{L}$.

Then, $G_{\gamma F}$ is $r_G(\gamma)$ -strict contraction, where

 $r_G(\gamma) = \max\{|1 - \gamma \rho|, |1 - \gamma L|\} \in [0, 1[.$

Moreover, $r_G(\frac{2}{L+\rho}) = \min_{\gamma>0} r_G(\gamma) = \frac{L-\rho}{L+\rho}$.

ロト (日) (日) (日) (日) (日) (日)

Motivation Part I

Part II

Appendix: Proof

- F is ρ -strongly convex $\Leftrightarrow h = F \frac{\rho}{2} \| \cdot \|_2^2$ is convex.
- F differentiable $\Leftrightarrow h$ differentiable and $\nabla h = \nabla F \rho \text{Id}$.
- ∇F is *L*-Lipschitz continuous (B-H)

$$\Leftrightarrow (\nabla F(x) - \nabla F(y))^{\top} (x - y) \leq L \|x - y\|_2^2 \Leftrightarrow (\nabla h(x) - \nabla h(y)))^{\top} (x - y) \leq (L - \rho) \|x - y\|_2^2 \Leftrightarrow \nabla h \text{ is } (L - \rho)\text{-Lipschitz continuous.}$$

For every x and y in \mathbb{R}^N ,

$$\begin{split} \|G_{\gamma F}x - G_{\gamma F}y\|_{2}^{2} &= \|x - y - \gamma(\nabla F(x) - \nabla F(y))\|_{2}^{2} \\ &= \|(1 - \gamma \rho)(x - y) - \gamma(\nabla h(x) - \nabla h(y))\|_{2}^{2} \\ &= (1 - \gamma \rho)^{2} \|x - y\|_{2}^{2} + \gamma^{2} \|\nabla h(x) - \nabla h(y)\|_{2}^{2} \\ &\quad - 2\gamma(1 - \gamma \rho)(\nabla h(x) - \nabla h(y))^{\top}(x - y) \\ &\leq (1 - \gamma \rho)^{2} \|x - y\|_{2}^{2} \\ &\quad + \gamma(\gamma(L + \rho) - 2)(\nabla h(x) - \nabla h(y))^{\top}(x - y) \end{split}$$

Appendix: Proof

Two cases:

• If $\gamma < \frac{2}{L+\rho}$: Since h is convex and differentiable, ∇h is monotone, i.e., $(\nabla h(x) - \nabla h(y))^{\top}(x-y) \ge 0$, obtaining

$$\|G_{\gamma F}x - G_{\gamma F}y\|_{2}^{2} \leq \underbrace{(1 - \gamma \rho)^{2}}_{\leq r_{G}(\gamma)^{2}} \|x - y\|_{2}^{2}$$

• If $\gamma \geq \frac{2}{L+\rho}$: *h* is convex and ∇h is $(L-\rho)$ -Lipschitz, B-H implies $(\nabla h(x) - \nabla h(y))^{\top}(x-y) \leq (L-\rho)||x-y||^2$, which yields

$$\begin{split} \|G_{\gamma F}x - G_{\gamma F}y\|_{2}^{2} &\leq \left((1 - \gamma \rho)^{2} + \gamma (L - \rho)(\gamma (L + \rho) - 2)\right)\|x - y\|^{2} \\ &= \underbrace{(1 - \gamma L)^{2}}_{\leq r_{G}(\gamma)^{2}}\|x - y\|_{2}^{2}. \quad \Box \end{split}$$

- 4 同 ト 4 ヨ ト 4 ヨ ト

1 Motivation

- 2 Part I: Convex functions in image/signal processing
- **(3)** Part II: TV- ℓ_2 regularization: smooth convex functions
- 4 Part III: TV- ℓ_1 regularization: nonsmooth convex functions

Part III: TV- ℓ_1 regularization: nonsmooth convex functions.

- **1** TV- ℓ_1 denoising
 - Problem
 - Douglas-Rachford splitting
 - Application to signals
 - Dual Forward-Backward-Splitting
 - Application to images
- **2** TV- ℓ_1 deblurring
 - Problem
 - Primal-dual algorithms
 - Application to images
- **3** Concluding remarks

TV- ℓ_1 denoising

- Suppose that $\overline{x} \in \mathbb{R}^N$ is the signal/image to be recovered.
- $z = \overline{x} + \varepsilon \in \mathbb{R}^N$, where ε is a Gaussian noise.
- $\lambda > 0$

Denoising with TV- ℓ_1 regularization

$$\min_{x \in \mathbb{R}^N} F(x) = \frac{1}{2} \|x - z\|_2^2 + \lambda \|Dx\|_1$$

- Non-smooth convex function. Gradient method not available.
- $F \in \Gamma_0(\mathbb{R}^N)$ is 1-strongly convex. Then $\arg \min F = \{x^*\}$.
- Fermat and Moreau-Rockafellar theorems yields

$$0 \in x^* - z + \lambda \partial(\|D \cdot\|_1)(x^*) \iff x^* = \operatorname{prox}_{\lambda \|D \cdot\|_1}(z).$$

• $\operatorname{prox}_{\lambda \| D \cdot \|_1}$ not easy in general !

Recall: proximity operator

Let
$$F \in \Gamma_0(\mathbb{R}^N)$$
 and $\gamma > 0$

Proximity operator

$$p = \operatorname{prox}_{\gamma F} x \iff \frac{x-p}{\gamma} \in \partial F(p)$$

Property

 $\operatorname{prox}_{\gamma F}$ is 1/2-averaged nonexpansive

Dem. Let $x, y \in \mathbb{R}^N$, set $p = \operatorname{prox}_{\gamma F} x$, and $q = \operatorname{prox}_{\gamma F} y$. The monotonicity of ∂F implies

$$0 \leq \left(\frac{x-p}{\gamma} - \frac{y-q}{\gamma}\right)^{\top} (p-q)$$
$$= \frac{1}{\gamma} \left((x-y)^{\top} (p-q) - \|p-q\|_2^2 \right).$$

L. M. Briceño-AriasUniversidad Técnica Federico Santa María

- 4 同 6 4 日 6 4 日 6

 $\operatorname{prox}_{\gamma \parallel D \cdot \parallel_1}$ if $DD^{\top} = \mu \operatorname{Id} ?$

- Suppose that $DD^{\top} = \mu \text{Id}$ for some $\mu > 0$.
- Let $x \in \mathbb{R}^N$. We have (Moreau-Rockafellar)

$$p = \operatorname{prox}_{\gamma \parallel D \cdot \parallel_{1}} x \iff x - p \in \gamma \partial (\parallel D \cdot \parallel_{1})(p) = \gamma D^{\top} \underbrace{\partial \parallel \cdot \parallel_{1}(Dp)}_{u \in}$$
$$\Leftrightarrow (\exists u \in \partial \parallel \cdot \parallel_{1}(Dp)) \ p = x - \gamma D^{\top} u.$$

• In addition, since $DD^{\top} = \mu \text{Id}$,

$$Dx - Dp = \gamma \underbrace{DD^{\top}}_{\mu \mathrm{Id}} u \in \gamma \underbrace{DD^{\top}}_{\mu \mathrm{Id}} \partial \| \cdot \|_{1} (Dp) \Rightarrow \begin{cases} Dp = \mathrm{prox}_{\gamma \mu \| \cdot \|_{1}} (Dx) \\ u = \frac{Dx - Dp}{\gamma \mu}. \end{cases}$$

If
$$DD^{\top} = \mu \text{Id}$$

$$\operatorname{prox}_{\gamma \parallel D \cdot \parallel_{1}} x = x - \frac{1}{\mu} D^{\top} (Dx - \operatorname{prox}_{\gamma \mu \parallel \cdot \parallel_{1}} (Dx))$$

Reformulation

• However, DD^{\top} is not diagonal. Python. Signal denoising.

Reformulation

- However, DD^{\top} is not diagonal. Python. Signal denoising.
- In the case of signals: $||Dx||_1 = \sum_{i=2}^N |x_i x_{i-1}| = \sum_{j=1}^{N/2} |x_{2j} x_{2j-1}| + \sum_{j=1}^{N/2} |x_{2j+1} x_{2j}| = ||D_e x||_1 + ||D_o x||_1$, where

$$D_e = \begin{bmatrix} -1 & 1 & 0 & 0 & \cdots & 0 & 0 \\ 0 & 0 & -1 & 1 & \cdots & 0 & 0 \\ \vdots & & \ddots & \vdots & \\ 0 & 0 & 0 & 0 & \cdots & -1 & 1 \end{bmatrix}, D_o = \begin{bmatrix} 0 & 0 & -1 & 1 & \cdots & 0 & 0 & 0 \\ \vdots & & \ddots & \vdots & \\ 0 & 0 & 0 & 0 & \cdots & -1 & 1 & 0 \end{bmatrix}$$

•
$$D_e D_e^{\top} = 2$$
Id and $D_o D_o^{\top} = 2$ Id.

Signal denoising with TV- ℓ_1 regularization

$$\min_{x \in \mathbb{R}^N} F(x) = \underbrace{\frac{1}{2} \|x - z\|_2^2 + \lambda \|D_e x\|_1}_{f(x)} + \underbrace{\lambda \|D_o x\|_1}_{g(x)}$$

Reflections

Let f and g be functions in $\Gamma_0(\mathbb{R}^N)$.

Problem $\min_{x \in \mathbb{R}^N} f(x) + g(x)$

Definition: Reflection operator

$$R_f = 2 \operatorname{prox}_f - \operatorname{Id}$$

Proposition

 $(\forall \gamma > 0) R_{\gamma f}$ is nonexpansive (1-Lipschitz)

Dem.

$$||R_f x - R_f y||_2^2 = 4(||\operatorname{prox}_f x - \operatorname{prox}_f y||_2^2 - (\operatorname{prox}_f x - \operatorname{prox}_f y)^\top (x - y)) + ||x - y||_2^2 \leq ||x - y||_2^2 \square$$

イロト イポト イヨト イヨト

Reflections

Example:
$$f = \iota_C$$
. Then $\operatorname{prox}_f = P_C$ y $R_f = 2P_C - \operatorname{Id}$.

Reflections

Proposition

If
$$z^* \in \operatorname{Fix} R_f R_g$$
, then $\operatorname{prox}_g z^* \in \operatorname{arg\,min}(f+g)$

Dem.

$$\begin{split} z^* &= R_f R_g z^* \iff z^* = 2 \mathrm{prox}_f (2 \mathrm{prox}_g z^* - z^*) - 2 \mathrm{prox}_g z^* + z^* \\ \Leftrightarrow & \mathrm{prox}_f (2 \mathrm{prox}_g z^* - z^*) = \mathrm{prox}_g z^* \\ \Rightarrow & \begin{cases} (2 \mathrm{prox}_g z^* - z^*) - \mathrm{prox}_g z^* \in \partial f(\mathrm{prox}_g z^*) \\ z^* - \mathrm{prox}_g z^* \in \partial g(\mathrm{prox}_g z^*) \end{cases} \\ \Leftrightarrow & \begin{cases} \mathrm{prox}_g z^* - z^* \in \partial f(\mathrm{prox}_g z^*) \\ z^* - \mathrm{prox}_g z^* \in \partial g(\mathrm{prox}_g z^*) \\ z^* - \mathrm{prox}_g z^* \in \partial g(\mathrm{prox}_g z^*) \end{cases} \\ \Rightarrow & 0 \in \partial f(\mathrm{prox}_g z^*) + \partial g(\mathrm{prox}_g z^*) \\ \Rightarrow & \mathrm{prox}_g z^* \in \arg\min(f + g). \end{split}$$

Reflections

- Problem: $z_{n+1} = R_f R_g z_n$ does not converge.
- Example: $f = \iota_D$ and $g = \iota_C$.

• $T = R_f R_g$ is (merely) nonexpansive (1-Lipschitz)

《曰》《聞》《臣》《臣》

T nonexpansive with $\operatorname{Fix} T \neq \emptyset$

- Let $T \colon \mathbb{R}^N \to \mathbb{R}^N$ be nonexpansive.
- Fix $T \neq \emptyset$.

Then, defining

$$(\forall \alpha \in]0,1[) \quad T_{\alpha} = (1-\alpha)\mathrm{Id} + \alpha T,$$

we have (exercise)

- T_{α} is α -averaged nonexpansive.
- Fix $T_{\alpha} =$ Fix $T \neq \emptyset$.

Then

Krasnoselskii-Mann (KM)

$$(\forall n \in \mathbb{N}) \quad z_{n+1} = (1 - \alpha)z_n + \alpha T z_n,$$

There exists $z^* \in \operatorname{Fix} T$, such that $z_n \to z^*$.

Douglas-Rachford splitting (DRS)

DRS: KM with $T = R_{\gamma f} R_{\gamma g}$ and $\alpha = 1/2$

$$(\forall n \in \mathbb{N}) \quad z_{n+1} = \frac{z_n + R_{\gamma f} R_{\gamma g} z_n}{2} \\ = \operatorname{prox}_{\gamma f} (2 \operatorname{prox}_{\gamma g} z_n - z_n) + z_n - \operatorname{prox}_{\gamma g} z_n$$

Part II

There exists $z^* \in \operatorname{Fix} T$, such that $z_n \to z^*$ and $\operatorname{prox}_{\gamma g} z^* \in \operatorname{arg\,min}(f+g)$.

Part III

Motivation

Part I

DRS for TV- ℓ_1 signal denoising

Part I

Signal denoising with TV- ℓ_1 regularization

$$\min_{x \in \mathbb{R}^N} F(x) = \underbrace{\frac{1}{2} \|x - z\|_2^2 + \lambda \|D_e x\|_1}_{f(x)} + \underbrace{\lambda \|D_o x\|_1}_{g(x)}$$

• $f = \frac{1}{2} \|\cdot -z\|_2^2 + \lambda \|D_e \cdot\|_1$ and $g = \lambda \|D_o \cdot\|_1$ are convex nonsmooth.

Part II

• Proximity operators simple to compute (Done for g !)

Python. Signal denoising

Same argument/formulation is no longer valid for images, since D = [D1; D2]...

Motivation

Part III

Fenchel conjugate

Let $f \in \Gamma_0(\mathbb{R}^N)$.

Fenchel conjugate

$$(\forall y \in \mathbb{R}^N) \quad f^*(y) = \sup_{x \in \mathbb{R}^N} \left(x^\top y - f(x) \right)$$

Fenchel-Rockafellar duality

Denoising with TV- ℓ_1 regularization

$$\min_{x \in \mathbb{R}^N} F(x) = \underbrace{\frac{1}{2} \|x - z\|_2^2}_{f(x)} + \underbrace{\lambda \|Dx\|_1}_{g(Dx)}$$

• **Primal**:
$$(P) \quad \min_{x \in \mathbb{R}^N} f(x) + g(Dx)$$

• **Dual**: (D)
$$\min_{u \in \mathbb{R}^N} f^*(-D^\top u) + g^*(u)$$

- Both values coincide.
- u^* solves (D), then $x^* = \nabla f^*(-D^\top u^*)$ solves (P).⁵

Dual of TV- ℓ_1 denoising

•
$$f^*(y) = \frac{1}{2} \|y + z\|_2^2$$

•
$$g^*(u) = \iota_{\lambda B_{\infty}}$$
, where $B_{\infty} = [-1, 1]^N$.

Dual TV- ℓ_1 regularization

$$\min_{u \in \mathbb{R}^N} \underbrace{\frac{1}{2} \| - D^\top u + z \|_2^2}_{\varphi(u)} + \underbrace{\iota_{[-\lambda,\lambda]^N}(u)}_{\psi(u)}$$

• $\psi = \iota_{[-\lambda,\lambda]^N}$ convex nonsmooth.

- $\varphi = \frac{1}{2} \| D^\top \cdot + z \|_2^2$ convex differentiable, and $\nabla \varphi \colon u \mapsto D(D^\top u - z)$ is $\|D\|_2^2$ Lipschitz continuous.
- But no strong convexity... not necessarily unique solution.

イロト イポト イヨト イヨト

Fermat to fixed points

Denoising with TV- ℓ_1 regularization

- φ convex differentiable with L-Lipschitz gradient.
- $\psi \in \Gamma_0(\mathbb{R}^N).$

$$\min_{u \in \mathbb{R}^N} \varphi(u) + \psi(u)$$

Fermat and M-R imply, for every $\gamma > 0$,

$$u^{*} \in \arg\min(\varphi + \psi) \iff 0 \in \nabla\varphi(u^{*}) + \partial\psi(u^{*})$$
$$\Leftrightarrow u^{*} - \gamma\nabla\varphi(u^{*}) \in u^{*} + \gamma\partial\psi(u^{*})$$
$$\Leftrightarrow u^{*} = \operatorname{prox}_{\gamma\psi}(u^{*} - \gamma\nabla\varphi(u^{*}))$$
$$\Leftrightarrow u^{*} \in \operatorname{Fix} T_{\gamma,\psi,\varphi}$$

$$T_{\gamma,\psi,\varphi} = \operatorname{prox}_{\gamma\psi} \circ G_{\gamma\varphi}$$

- Let $\gamma < 2/L_{\varphi}$. Then $G_{\gamma\varphi}$ is $\gamma L_{\varphi}/2$ -averaged nonexpansive.
- Let $\gamma > 0$. Then $\operatorname{prox}_{\gamma\psi}$ is 1/2-averaged nonexpansive.
- If S_1 and S_2 are averaged nonexpansive, respectively, then $T = S_1 \circ S_2$ is averaged nonexpansive for some $\alpha \in]0, 1[$ (Appendix).

$$T_{\gamma,\psi,\varphi} = \operatorname{prox}_{\gamma\psi} \circ G_{\gamma\varphi}$$
 is averaged nonexpansive.

Forward-backward splitting (FBS) $(\forall n \in \mathbb{N}) \quad x_{n+1} = \operatorname{prox}_{\gamma\psi}(x_n - \gamma \nabla \varphi(x_n))$ Then $x_n \to x^* \in \arg\min(\psi + \varphi)$.
Dual FBS

Dual TV- ℓ_1 regularization $\min_{u \in \mathbb{R}^N} \frac{1}{2} \|z - D^\top u\|_2^2 + \iota_r$ (u)

$$\underbrace{\frac{2}{\varphi(u)}}_{\varphi(u)} \underbrace{\frac{1}{\psi(u)}}_{\psi(u)} \underbrace{\frac{1}{\psi(u)}}_{\psi(u)} \underbrace{\frac{1}{\psi(u)}}_{\psi(u)}$$

Dual FBS

Let
$$\gamma \in \left[0, \frac{2}{\|D\|_2^2}\right[$$
.
 $(\forall n \in \mathbb{N}) \quad u_{n+1} = P_{[-\lambda,\lambda]^N}(u_n - \gamma D(D^\top u_n - z))$
Then $u_n \to u^*$ solution to (D) and $x^* = z - D^\top u^* \in \arg\min F$.

Python. Image-TV-l2-grad-theo-vs-num

《口》《聞》《臣》《臣》

TV ℓ_1 deblurring

- Suppose that $\overline{x} \in \mathbb{R}^N$ is the signal to be recovered.
- $z = \Phi \overline{x} + \varepsilon \in \mathbb{R}^N$, where ε is a Gaussian noise and Φ is a blur operator.
- $\lambda > 0$

Deblurring with TV- ℓ_1 regularization

$$\min_{x \in \mathbb{R}^N} F(x) = \frac{1}{2} \|\Phi x - z\|_2^2 + \lambda \|Dx\|_1$$

- Non-smooth convex function. Gradient method not available.
- $F \in \Gamma_0(\mathbb{R}^N)$ not strongly convex unless Φ injective.
- Fermat and Moreau-Rockafellar theorems yields

$$0 \in \Phi^\top (\Phi x^* - z) + \lambda D^\top \partial (\|\cdot\|_1) (Dx^*)$$

• Primal-dual algorithms !

Primal-dual splitting (PDS)

Problem

- $f \in \Gamma_0(\mathbb{R}^N), g \in \Gamma_0(\mathbb{R}^M)$
- D is a $M \times N$ real matrix
- h is convex, differentiable, and ∇h is L-Lipschitz cont.

$$(P) \quad \min_{x \in \mathbb{R}^N} f(x) + g(Dx) + h(x)$$

Condat-Vũ (2013)

•
$$x_0 \in \mathbb{R}^N, u_0 \in \mathbb{R}^M, \text{ and } \sigma \|D\|^2 < \frac{1}{\tau} - \frac{L}{2}$$

 $(\forall n \in \mathbb{N}) \quad \begin{cases} x_{n+1} = \operatorname{prox}_{\tau f}(x_n - \tau(\nabla h(x_n) + D^\top u_n)) \\ u_{n+1} = \operatorname{prox}_{\sigma g^*}(u_n + \sigma L(2x_{n+1} - x_n)). \end{cases}$

Then, there exists x^* solution to (P) and u^* solution to (D) such that $x_n \to x^*$ and $u_n \to u^*$.

Application: $TV-\ell_1$ deblurring

Deblurring with TV- ℓ_1 regularization

$$\min_{x \in \mathbb{R}^N} F(x) = \underbrace{\frac{1}{2} \|\Phi x - z\|_2^2}_{h(x)} + \underbrace{\lambda \|Dx\|_1}_{g(Dx)}$$

PDS to TV- ℓ_1 deblurring

$$(\forall n \in \mathbb{N}) \quad \begin{cases} x_{n+1} = x_n - \tau (\Phi^\top (\Phi x_n - z) + D^\top u_n)) \\ u_{n+1} = \operatorname{prox}_{[-\sigma\lambda,\sigma\lambda]^N} (u_n + \sigma D(2x_{n+1} - x_n)). \end{cases}$$

Python. TV-l2-image-deblurring-l1.

L. M. Briceño-AriasUniversidad Técnica Federico Santa María

Concluding remarks

- In this lecture, we have presented different algorithms (and their convergence) for image denoising/deblurring.
- As the model becomes more complex, the algorithms for solving it increase their complexity.
- The algorithms presented for the more complex models also can be used for simpler ones.
- Recent comparisons show that the use of proximity operators instead of gradient steps leads to more efficient algorithms.
- The regularization $||Dx||_{1,2}$ can be replaced by other regularization terms, including wavelets, nuclear norm, etc. which need more complicated algorithmic structures.

References: Part I

- Bauschke, H.H., Combettes, P.L.: Convex Analysis and Monotone Operator Theory in Hilbert Spaces, second edn. CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC. Springer, Cham (2017).
- Nesterov, Y. Introductory lectures on convex optimization: A basic course (Vol. 87). Springer Science & Business Media. (2003).
- https://npusteln.github.io/ProxImage/

References: Part II&III

- Bauschke, H.H., Combettes, P.L.: Convex Analysis and Monotone Operator Theory in Hilbert Spaces, second edn. CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC. Springer, Cham (2017).
- Nesterov, Y. Introductory lectures on convex optimization: A basic course (Vol. 87). Springer Science & Business Media.
- Briceño-Arias, L. M. and Pustelnik, N., Convergence rate comparison of proximal algorithms for non-smooth convex optimization. Application to texture segmentation. IEEE Signal Processing Letters, vol. 22, pp. 1337–1341, 2022.
- Aujol, J.-F., Gilboa, G., Chan, T., Osher, S.J.: Structure-texture image decomposition—Modeling, algorithms, and parameter selection. Int. J. Comput. Vis. 67, 111–136 (2006)
- Daubechies, I., Defrise, M., De Mol, C.: An iterative thresholding algorithm for linear inverse problems with a sparsity constraint. Commun. Pure Appl. Math. 57, 1413–1457 (2004)
- Briceño-Arias, L. M., Combettes, P. L., Pesquet, J.-C., and Pustelnik, N., Proximal algorithms for multicomponent image processing, J. Math. Imaging Vision, vol. 41, pp. 3–22 (2011).
- Combettes, P.L., Wajs, V.R.: Signal recovery by proximal forwardbackward splitting. Multiscale Model. Simul. 4, 1168–1200 (2005)

References: Part II&III

- Baillon, J.-B., Haddad, G.: Quelques propriétés des opérateurs angle-bornés et n-cycliquement monotones, Israel J. Math. 26 137–150, (1977)
- Combettes, P. L., Solving monotone inclusions via compositions of nonexpansive averaged operators, Optimization, vol. 53, no. 5–6, pp. 475–504, 2004.
- Briceño-Arias, L. M., Pustelnik, N., Theoretical and numerical comparison of first-order algorithms for coccoercive equations and smooth convex optimization, preprint, 2022 https://arxiv.org/abs/2101.06152
- Combettes, P. L., Dũng, D., Vũ, B. C., Dualization of signal recovery problems, Set-Valued and Variational Analysis, vol. 18, pp. 373–404, 2010.
- Lions, P.-L., Mercier, B., Splitting algorithms for the sum of two nonlinear operators, SIAM J. Numer. Anal., 16, pp. 964–979, (1979).
- Condat, L. A Primal–Dual Splitting Method for Convex Optimization Involving Lipschitzian, Proximable and Linear Composite Terms. J Optim Theory Appl 158, 460–479 (2013).
- Vũ., B. C., A splitting algorithm for dual monotone inclusions involving cocoercive operators, Adv. Comput. Math. 38, pp. 667–681, (2013).

イロト イポト イヨト イヨト

http://lbriceno.mat.utfsm.cl/ luis.briceno@usm.cl

🚽 L. M. Briceño-AriasUniversidad Técnica Federico Santa María