
Journal of Optimization Theory and Applications manuscript No.
(will be inserted by the editor)

Forward–Partial Inverse–Forward Splitting for Solving Monotone

Inclusions

Luis M. Briceño-Arias

Communicated by Viorel Barbu

Received: date / Accepted: date

Abstract In this paper, we provide a splitting method for finding a zero of the sum of a maximally

monotone operator, a Lipschitzian monotone operator, and a normal cone to a closed vector subspace

of a real Hilbert space. The problem is characterised by a simpler monotone inclusion involving only

two operators: the partial inverse of the maximally monotone operator with respect to the vector

subspace, and a suitable Lipschitzian monotone operator. By applying the Tseng’s method in this

context, we obtain a fully split algorithm, that exploits the whole structure of the original problem

and generalises partial inverse and Tseng’s methods. Connections with other methods available in

the literature are provided, and the flexibility of our setting is illustrated via applications to some

inclusions involving m maximally monotone operators, to primal-dual composite monotone inclusions,

and to zero-sum games.

Keywords composite operator · partial inverse · monotone operator theory · splitting algorithms ·

Tseng’s method

Mathematics Subject Classification (2000) MSC 47H05 · MSC 47J25 · MSC 65K05 · MSC

90C25

Luis M. Briceño-Arias
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1 Introduction

This paper is concerned with the numerical resolution of the problem of finding a zero of the sum of

a set-valued, maximally monotone operator, a Lipschitzian monotone operator, and a normal cone to

a closed vector subspace of a real Hilbert space. This problem arises in a wide range of areas such as

optimisation [1,2], variational inequalities [3–5], monotone operator theory [6–9], partial differential

equations [3,10,11], economics [12,13], signal and image processing [14–16], evolution inclusions [17,

18], traffic theory [19,20], and game theory [21], among others.

When the single-valued operator is zero, the problem is solved in [9] via the method of partial

inverses. On the other hand, when the vector subspace is the whole Hilbert space, the normal cone is

zero and our problem is reduced to finding a zero of the sum of two monotone operators. In this case,

the problem is solved in [22] via the forward-backward-forward splitting or Tseng’s method (see also

[23] and the references therein). In addition, in the case when the single-valued operator is cocoercive,

the problem is solved in [24].

In the general case, several algorithms are available in the literature for solving our problem, but

any of them exploits its intrinsic structure. The Tseng’s method [22] can be applied to the general

case, but it needs to compute the resolvent of the sum of the set-valued operator and the normal

cone, which is not always easy to implement. It is preferable to activate both operators separately.

Some ergodic approaches for solving this problem can be found in [25]. A disadvantage of these

methods is the presence of vanishing parameters, which usually lead to numerical instabilities. The

algorithms proposed in [9,23,26] permit us to find a zero of the sum of finitely many maximally

monotone operators by activating them independently, without considering vanishing parameters.

However, these methods need the computation of the resolvent of the single-valued operator, which is

not easy to compute in general. An algorithm proposed in [27] overcomes this difficulty by explicitly

activating the single-valued operator. However, this method does not take advantage of the vector

subspace involved. Indeed, by using product space techniques, the method in [27] needs to store

additional auxiliary variables at each iteration, which can be difficult in high-dimensional problems.

In this paper, we propose a fully split method for finding a zero of the sum of the three monotone

operators detailed before, by exploiting each of their intrinsic properties. The algorithm computes, at
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each iteration, explicit steps on the single-valued operator and the resolvent of the partial inverse of

the set-valued operator with respect to the closed vector subspace [9]. This resolvent has an explicit

expression in several cases and it reduces to a Douglas-Rachford step [7,28] in a particular instance.

In this case, our method can be perceived as a forward-Douglas-Rachford-forward splitting, which

generalises partial inverse and Tseng’s methods when the single-valued operator is zero and the vector

subspace is the whole Hilbert space, respectively. We also provide connections with other methods

in the literature and we illustrate the flexibility of our framework via some applications to inclusions

involving m maximally monotone operators, to primal-dual composite monotone inclusions, and to

zero-sum games. In the application to primal-dual inclusions, we introduce a new operation between

set-valued operators, called partial sum with respect to a closed vector subspace, which preserves

monotonicity and takes a central role in the problem and algorithm. On the other hand, in continuous

zero-sum games, we provide an interesting splitting algorithm for calculating a Nash equilibrium,

that avoids the computation of the projection onto mixed strategy spaces in infinite dimensions by

performing simpler projections alternately. These applications enlighten the flexibility and usefulness

of the vector space setting, which appears naturally in a different form in each instance.

The paper is organised as follows. In Section 2, we provide the notation and some preliminaries.

We also obtain a relaxed version of Tseng’s method [22], which is interesting in its own right. In

Section 3, a characterisation of our problem in terms of two appropriate monotone operators is given

and a method for solving this problem is derived from the relaxed version of Tseng’s algorithm.

Moreover, we provide connections with other methods in the literature. Finally, in Section 4, we apply

our method to the problem of finding a zero of a sum of m maximally monotone operators and a

Lipschitzian monotone operator, to a primal-dual composite monotone inclusion, and to continuous

zero-sum games. The methods derived in each instance generalise and improve available algorithms

in the literature.

2 Notation and Preliminaries

Throughout this paper, H is a real Hilbert space with scalar product denoted by 〈· | ·〉 and associated

norm ‖ · ‖. The symbols ⇀ and → denote, respectively, weak and strong convergence and Id denotes

the identity operator. The indicator function of a subset C of H is ιC , which takes the value 0 in C
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and +∞ in H\C. If C is non-empty, closed, and convex, then the projection of x onto C, denoted by

PCx, is the unique point in Argminy∈C ‖x−y‖, and the normal cone to C is the maximally monotone

operator

NC : H⇒ H : x 7→


{
u ∈ H : (∀y ∈ C) 〈y − x | u〉 ≤ 0

}
, if x ∈ C;

∅, otherwise.

(1)

An operator T : H → H is β–cocoercive for some β ∈ ]0,+∞[ iff, for every x ∈ H and y ∈ H,

〈x− y | Tx− Ty〉 ≥ β‖Tx− Ty‖2, it is χ-Lipschitzian iff, for every x, y ∈ H, ‖Tx− Ty‖ ≤ χ‖x− y‖,

it is non-expansive iff it is 1-Lipschitzian, and the set of fixed points of T is given by FixT .

We denote by graA =
{

(x, u) ∈ H×H : u ∈ Ax
}

the graph of A : H ⇒ H, by JA = (Id +A)−1

its resolvent, by domA =
{
x ∈ H : Ax 6= ∅

}
its domain, and by zerA =

{
x ∈ H : 0 ∈ Ax

}
its set

of zeros. If A is monotone, i.e., for every (x, u) and (y, v) in graA, 〈x− y | u− v〉 ≥ 0, then JA is

a single-valued, non-expansive operator. In addition, A is maximally monotone iff dom JA = H. Let

A : H ⇒ H be maximally monotone. The reflection operator of A is RA = 2JA − Id, which is non-

expansive. The partial inverse of A with respect to a vector subspace V of H, denoted by AV , is

defined by

(∀(x, y) ∈ H2) y ∈ AV x ⇔ (PV y + PV ⊥x) ∈ A(PV x+ PV ⊥y). (2)

Note that AH = A and A{0} = A−1. The following properties of the partial inverse will be useful

throughout this paper.

Proposition 2.1 Let A : H⇒ H be a set-valued operator and let V be a closed vector subspace of H.

Then, (AV )−1 = (A−1)V = AV ⊥ and PV (A+NV )−1PV = PV (AV ⊥ +NV )PV .

Proof. Let (x, u) ∈ H2. We have from (2) that

u ∈ (AV )−1x ⇔ x ∈ AV u

⇔ PV x+ PV ⊥u ∈ A(PV u+ PV ⊥x) (3)

⇔ PV u+ PV ⊥x ∈ A
−1(PV x+ PV ⊥u)

⇔ u ∈ (A−1)V x. (4)

On the other hand, it follows from (3) and (2) that u ∈ (AV )−1x is equivalent to u ∈ AV ⊥x. For the

second identity, we deduce from (2) that
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u ∈ PV (A+NV )−1(PV x) ⇔ (u ∈ V ) u ∈ (A+NV )−1(PV x)

⇔ (u ∈ V ) PV x ∈ Au+NV u

⇔ (u ∈ V )(∃ y ∈ V ⊥) PV x− y ∈ Au

⇔ (u ∈ V )(∃ y ∈ V ⊥) u− y ∈ AV ⊥(PV x)

⇔ (u ∈ V ) u ∈ (AV ⊥ +NV )(PV x)

⇔ u ∈ PV (AV ⊥ +NV )(PV x),

which yields the result.

The following result is a relaxed version of the methods proposed in [22,23,29].

Proposition 2.2 Let η ∈ ]0,+∞[, let A : H ⇒ H be maximally monotone, and let B : H → H be

monotone and η–Lipschitzian such that zer(A+B) 6= ∅. Moreover, let z0 ∈ H, let ε ∈ ]0,max{1, 1/2η}[,

let (δn)n∈N be a sequence in [ε, (1/η)− ε], let (λn)n∈N be a sequence in [ε, 1], and iterate

(∀n ∈ N)



rn := zn − δnBzn

sn := JδnArn

tn := sn − δnBsn

zn+1 := zn + λn(tn − rn).

(5)

Then, zn ⇀ z̄ for some z̄ ∈ zer(A+ B) and zn+1 − zn → 0.

Proof. First note that (5) yields

(∀n ∈ N) δ−1
n (rn − sn) ∈ Asn. (6)

Let z ∈ zer(A+ B) and fix n ∈ N. We have

‖zn+1 − z‖2=‖(1− λn)(zn − z) + λn(zn − z + tn − rn)‖2

=(1− λn)‖zn − z‖2 + λn‖zn − z + tn − rn‖2 − λn(1− λn)‖tn − rn‖2

=(1− λn)‖zn − z‖2 + λn‖sn − δn(Bsn − Bzn)− z‖2 − λn(1− λn)‖tn − rn‖2

≤(1−λn)‖zn−z‖2+λn
(
‖zn−z‖2+δ2

n‖Bsn−Bzn‖2−‖sn−zn‖2
)
−λn(1−λn)‖tn−rn‖2

≤ ‖zn − z‖2 − ε
(
1− (δnη)2)‖sn − zn‖2 − λn(1− λn)‖tn − rn‖2, (7)
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where the first and third equality follow from (5), the second equality is a consequence of [30, Corol-

lary 2.14], the inequality in the fourth line is obtained from [22, Lemma 3.1], and the last inequality

follows from the Lipschitz property on B, supn∈N δn < 1/η, and infn∈N λn ≥ ε. Hence, since δn < 1/η

and 0 < λn ≤ 1, we obtain ‖zn+1 − z‖2 ≤ ‖zn − z‖2, which yields the boundedness of the sequence

(zk)k∈N. Moreover, we deduce from (7) and [23, Lemma 2.1] that (‖sk−zk‖2)k∈N and (‖tk−rk‖2)k∈N

are summable and, in particular,

sk − zk → 0 and tk − rk → 0, (8)

which yields zk+1 − zk = λk(tk − rk)→ 0. By setting, for every k ∈ N, uk := δ−1
k (rk − tk), it follows

from (5), (6), and (8) that, uk = δ−1
k (rk − sk) + Bsk ∈ (A + B)sk and uk → 0. Hence, for any weak

cluster point of (zk)k∈N, say zk` ⇀ w, (8) yields sk` ⇀ w, uk` → 0, and (sk` , uk`) ∈ gra(A + B).

Since B is monotone and continuous, it is maximally monotone [30, Corollary 20.25]. Moreover, since

domB = H, we deduce from [30, Corollary 24.4(i)] that A+B is maximally monotone and, hence, its

graph is sequentially closed in Hweak×Hstrong [30, Proposition 20.33(ii)], which yields w ∈ zer(A+B).

Finally, from [23, Lemma 2.2], we deduce that there exists z̄ ∈ zer(A+ B) such that zn ⇀ z̄.

Remark 2.1 As in [23, Theorem 2.5], absolutely summable errors can be incorporated in each step of

the algorithm in (5). However, for ease of presentation, we only provide the error-free version.

3 Forward–Partial Inverse–Forward Splitting

We aim at solving the following problem.

Problem 3.1 LetH be a real Hilbert space and let V be a closed vector subspace ofH. Let A : H⇒ H

be a maximally monotone operator and let B : H → H be monotone and χ–Lipschitzian for some

χ ∈ ]0,+∞[. The problem is to

find x ∈ H such that 0 ∈ Ax+Bx+NV x, (9)

under the assumption Z := zer(A+B +NV ) 6= ∅.

In Problem 3.1, the operator NV is separated from A in order to exploit the intrinsic structure

of each operator. Indeed, the proposed method and its variants activate separately each constituent
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of the inclusion, as we will see in Section 3.2. In Section 4, we justify the importance of the vector

subspace framework via some applications, in which this setting appears naturally. In this section, we

study a characterisation of the solutions to Problem 3.1, we provide our algorithm, and we prove its

convergence to a solution to Problem 3.1.

3.1 Characterisation

The following result provides a characterisation of the solutions to Problem 3.1, in terms of two

suitable monotone operators.

Proposition 3.1 In the context of Problem 3.1, let γ ∈ ]0,+∞[ and define

Aγ := (γA)V : H⇒ H and Bγ := γPV ◦B ◦ PV : H → V. (10)

Then, the following hold:

(i) Aγ is maximally monotone and, for every δ ∈ ]0,+∞[ and x ∈ H, there exist p and q in H such

that x = p+ γq, JδAγx = PV p+ γPV ⊥q, and

PV q

δ
+ PV ⊥q ∈ A

(
PV p+

PV ⊥p

δ

)
. (11)

In particular, JAγ = 2PV JγA − JγA + Id−PV = (Id +RNV RγA)/2.

(ii) Bγ is monotone and γχ–Lipschitzian.

(iii) Let x ∈ H. Then, x is a solution to Problem 3.1 if and only if x ∈ V and(
∃ y ∈ V ⊥ ∩ (Ax+Bx)

)
such that x+ γ(y − PV ⊥Bx) ∈ zer(Aγ + Bγ). (12)

(iv) Z = PV
(

zer(Aγ + Bγ)
)
.

Proof. (i): Since γA is maximally monotone, Aγ inherits this property [9, Proposition 2.1]. In addition,

for every (r, x) ∈ H2 and δ ∈ ]0,+∞[, it follows from (2) that

r = JδAγx⇔
x− r
δ
∈ Aγr

⇔ PV (x− r)
δ

+ PV ⊥r ∈ γA
(
PV r +

PV ⊥(x− r)
δ

)
⇔ PV (x− r)

γδ
+
PV ⊥r

γ
∈ A

(
PV r +

PV ⊥(x− r)
δ

)
. (13)
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Hence, by taking p := PV ⊥(x−r)+PV r and q := (PV (x−r)+PV ⊥r)/γ, we have p+γq = (x−r)+r = x,

PV p + γPV ⊥q = r = JδAγx, and (11). Now, in the particular case when δ = 1, (11) reduces to

p = JγA(p+ γq) = JγAx and, hence,

JAγx = PV (JγAx) + PV ⊥(x− JγAx)

= 2PV JγAx− JγAx+ x− PV x

=
1

2
(x+ 2PV (2JγAx− x)− 2JγAx+ x)

=
1

2
(x+RNV RγAx) . (14)

(ii): Let (x, y) ∈ H2. We have from (10), the monotonicity of B, the linearity of PV , and P ∗V = PV that

〈x− y | Bγx− Bγy〉 = γ 〈PV x− PV y | B(PV x)−B(PV y)〉 ≥ 0 and, from the Lipschitzian property

on B and (10), we obtain ‖Bγx − Bγy‖ ≤ γ‖B(PV x) − B(PV y)‖ ≤ γχ‖PV x − PV y‖ ≤ γχ‖x − y‖.

(iii): Let x ∈ H be a solution to Problem 3.1. We have x ∈ V , and there exists y ∈ V ⊥ = NV x such

that y ∈ Ax+Bx. Since B is single valued and PV is linear, it follows from (2) that

y ∈ Ax+Bx ⇔ γy − γBx ∈ γAx

⇔ −γPV (Bx) ∈ (γA)V
(
x+ γ(y − PV ⊥Bx)

)
⇔ 0 ∈ (γA)V (x+ γ(y − PV ⊥Bx)) + γPV

(
B
(
PV (x+ γ(y − PV ⊥Bx))

))
⇔ x+ γ(y − PV ⊥Bx) ∈ zer(Aγ + Bγ), (15)

which yields the result. (iv): Direct from (iii).

3.2 Algorithm and Convergence

In the following result, we propose our algorithm and we prove its convergence to a solution to

Problem 3.1. Since Proposition 3.1 asserts that Problem 3.1 can be written as a monotone inclusion

involving a maximally monotone operator and a single-valued Lipschitzian monotone operator, our

method is a consequence of Proposition 2.2 applied to this context.

Algorithm 3.1 In the context of Problem 3.1, let γ ∈ ]0,+∞[, let ε ∈ ]0,max{1, 1/(2γχ)}[, let

(δn)n∈N be a sequence in [ε, 1/(γχ)− ε], let (λn)n∈N be a sequence in [ε, 1], let x0 ∈ V , let y0 ∈ V ⊥,

and, for every n ∈ N,
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Step 1. find (pn, qn) ∈ H2 such that xn − δnγPV Bxn + γyn = pn + γqn

and
PV qn
δn

+ PV ⊥qn ∈ A
(
PV pn +

PV ⊥pn
δn

)
. (16)

Step 2. set xn+1 := xn + λn(PV pn + δnγPV (Bxn −BPV pn)− xn)

and yn+1 := yn + λn(PV ⊥qn − yn).Go to Step 1.

Theorem 3.1 Let (xn)n∈N and (yn)n∈N be the sequences generated by Algorithm 3.1. Then (xn)n∈N

and (yn)n∈N are in V and V ⊥, respectively, xn ⇀ x and yn ⇀ y for some solution x ∈ zer(A+B+NV )

and y ∈ V ⊥ ∩ (Ax+ PV Bx), xn+1 − xn → 0 , and yn+1 − yn → 0.

Proof. Since x0 ∈ V and y0 ∈ V ⊥, (16) yields (xn)n∈N ⊂ V and (yn)n∈N ⊂ V ⊥. Thus, for every

n ∈ N, it follows from (16) and Proposition 3.1(i) that

PV pn + γPV ⊥qn = Jδn(γA)V (xn + γyn − δnγPV Bxn). (17)

For every n ∈ N, denote zn := xn + γyn and

sn := Jδn(γA)V (xn + γyn − δnγPV Bxn) = JδnAγ (zn − δnγPV BPV zn) = JδnAγ (zn − δnBγzn). (18)

Hence, it follows from (17) that PV pn = PV sn, γPV ⊥qn = PV ⊥sn, and, from (16), we obtain

xn+1 = xn+λn(PV sn+δnγPV (Bxn−BPV sn)−xn) and γyn+1 = γyn+λn(PV ⊥sn−γyn). (19)

By adding the latter equations, we deduce that the algorithm described in (16) can be written as

(∀n ∈ N)



rn := zn − δnBγzn

sn = JδnAγ rn

tn := sn − δnBγsn

zn+1 = zn + λn(tn − rn),

(20)

which is a particular instance of (5) when B = Bγ and A = Aγ . Therefore, it follows from Propo-

sition 3.1(i)&(ii) and Proposition 2.2 that zn ⇀ z ∈ zer(Aγ + Bγ) and zn+1 − zn → 0. By defining

x := PV z and y := PV ⊥z/γ, the results follow from Proposition 3.1 and Proposition 2.2.

Remark 3.1

(i) The Tseng’s method allows for errors in the computations of the operators involved [23,29]. In our

algorithm, these inexactitudes have not been considered for simplicity.
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(ii) In the particular case when λn ≡ 1 and B ≡ 0 (χ = 0), Algorithm 3.1 reduces to the classical

partial inverse method [9] for finding x ∈ V such that there exists y ∈ V ⊥ satisfying y ∈ Ax.

(iii) Under further assumptions on the operators Aγ and/or Bγ , e.g., as demi-regularity (see [31,

Definition 2.3&Proposition 2.4]), strong convergence can be achieved. In particular, under the

assumptions of Proposition 4.2 below, the strong monotonicity of Aγ can be guaranteed, and by

following the proof in [23, Theorem 2.5(iii)], we obtain strong convergence of the iterates.

The sequence (δn)n∈N in Algorithm 3.1 can be manipulated in order to accelerate the convergence.

However, as in [9], Step 1 in Algorithm 3.1 is not always easy to compute. The following results show

us a particular case of our method, in which Step 1 can be obtained explicitly when the resolvent of

A is computable. The method can be seen as a forward-Douglas-Rachford-forward splitting.

Corollary 3.1 In the setting of Problem 3.1, let γ ∈ ]0, 1/χ[, let ε ∈ ]0, 1[, let (λn)n∈N be a sequence

in [ε, 1], let z0 ∈ H, and iterate, for every n ∈ N,

rn := zn − γPV BPV zn

pn := JγArn

sn := 2PV pn − pn + rn − PV rn

tn := sn − γPV BPV sn

zn+1 := zn + λn(tn − rn).

(21)

Then, by setting, for every n ∈ N, xn := PV zn and yn := PV ⊥zn/γ, we have xn ⇀ x̄ and yn ⇀ ȳ for

some x ∈ zer(A+B +NV ) and y ∈ V ⊥ ∩ (Ax+ PV Bx), xn+1 − xn → 0, and yn+1 − yn → 0.

Proof. Indeed, it follows from the proof of Theorem 3.1 that Algorithm 3.1 is equivalent to (20),

where, for every n ∈ N, zn = xn + γyn. In the particular case when δn ≡ 1 ∈ ]0, 1/(γχ)[, it follows

from Proposition 3.1(i) that (20) reduces to (21). Hence, the results follow from Theorem 3.1.

Remark 3.2

(i) Note that, when V = H and λn ≡ 1, we have V ⊥ = {0}, PV = Id, (Id +RNV RγA)/2 = JγA, and,

therefore, (21) reduces to

(∀n ∈ N)



rn = xn − γBxn

sn = JγArn

tn = sn − γBsn

xn+1 = xn + tn − rn,

(22)
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which is a version with constant step size of the Tseng’s method [22] for finding a zero of A+B.

(ii) On the other hand, when B ≡ 0, (21) reduces to

(∀n ∈ N)

 sn = (zn +RNV RγAzn)/2

zn+1 = zn + λn(sn − zn),
(23)

which is the Douglas-Rachford splitting method [7,28] for finding x ∈ H such that 0 ∈ NV x+Ax.

It coincides with Spingarn’s partial inverse method with constant step size [6]. On the other hand,

in the particular case when A is a normal cone to a closed and convex set, a detailed study of this

method and some extensions and modifications may be found in [32].

(iii) Let H and G be real Hilbert spaces, let L : H→ G be linear and bounded, let A and B be maximally

monotone operators, and define T : (x, y) ∈ H 7→ y− Lx. When H = H×G, V = kerT , B = 0, and

A : (x, y) 7→ Ax× By, Problem 3.1 reduces to the primal-dual inclusions (see [33])

find x ∈ H such that 0 ∈ Ax + L∗B(Lx)

find u ∈ G such that 0 ∈ −LA−1(−L∗u) + B−1u. (24)

In this context, the algorithm proposed in Corollary 3.1 is the method proposed recently in [33]

in the absence of errors. This algorithm needs the computation of PV , which involves the inverse

of a suitable linear operator. Since our framework allows for a non-zero Lipschitzian monotone

operator, it can address more complicated structures than (24).

4 Applications

In this section, we study three applications of our method. In each instance, a different closed vec-

tor subspace arises naturally, which illustrates the flexibility of our setting. Connections with other

algorithms in each framework are provided.

4.1 Inclusion Involving the Sum of m Monotone Operators

Problem 4.1 Let (H, | · |) be a real Hilbert space, for every i ∈ {1, . . . ,m}, let Ai : H ⇒ H be

maximally monotone, and let B : H→ H be monotone and χ–Lipschitzian. The problem is to

find x ∈ H such that 0 ∈
m∑
i=1

Aix + Bx, (25)
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under the assumption that solutions exist.

Problem 4.1 has several applications in image processing, principally in the variational setting

(see, e.g., [1,34] and the references therein), variational inequalities [4,5], partial differential equa-

tions [10,11], and economics [12,13], among others. In [34,35], Problem 4.1 is solved by a fully split

algorithm in the particular case when B is cocoercive. Nevertheless, this approach does not seem to

work in the general case. In [27], a method for solving a more general problem than Problem 4.1 is

proposed. However, this approach stores and updates at each iteration m dual variables, which may

be unfavourable in large scale systems. Our method exploits the whole structure of the problem and

it is obtained from Theorem 3.1, when the underlying closed vector subspace is the diagonal space in

Hm.

Let us first provide a connection between Problem 4.1 and Problem 3.1 via product space tech-

niques. Let (ωi)1≤i≤m be real numbers in ]0, 1[ such that
∑m
i=1 ωi = 1, let H be the real Hilbert

space obtained by endowing the Cartesian product Hm with the scalar product and associated norm,

respectively defined by 〈x | y〉 :=
∑m
i=1 ωi〈xi | yi〉 and ‖x‖ :=

√∑m
i=1 ωi|xi|2, where x = (xi)1≤i≤m

and y = (yi)1≤i≤m are generic elements of H.

Proposition 4.1 In the context of Problem 4.1, define

V :=
{
x = (xi)1≤i≤m ∈ H : x1 = · · · = xm

}
, j : H→ V ⊂ H : x 7→ (x, . . . , x),

A : H⇒ H : x 7→ 1

ω1
A1x1 × · · · ×

1

ωm
Amxm, B : H → H : x 7→ (Bx1, . . . ,Bxm). (26)

Then, the following hold:

(i) V is a closed vector subspace of H, for every x = (xi)1≤i≤m ∈ H, PV x = j(
∑m
i=1 ωixi), and, if

x ∈ V , then NV x = V ⊥ =
{
x = (xi)1≤i≤m ∈ H :

∑m
i=1 ωixi = 0

}
; otherwise, NV x = ∅.

(ii) j : H→ V is a bijective isometry and j−1 : (x, . . . , x) 7→ x.

(iii) A is a maximally monotone operator and, for every γ ∈ ]0,+∞[, JγA : (xi)1≤i≤m 7→ (JγAi/ωixi).

(iv) B is monotone and χ–Lipschitzian, B(j(x)) = j(Bx), and B(V ) ⊂ V .

(v) For every x ∈ H, x is a solution to Problem 4.1 if and only if j(x) ∈ zer(A+B +NV ).

Proof. (i)&(ii): They follow from (1) and easy computations. (iii): [30, Proposition 23.16]. (iv): They

follow from simple computations by using (26) and the properties on B. (v): Let x ∈ H. We have
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0 ∈
m∑
i=1

Aix + Bx ⇔
(
∃ (yi)1≤i≤m ∈

m×
i=1

Aix

)
0 =

m∑
i=1

yi + Bx

⇔
(
∃ (yi)1≤i≤m ∈

m×
i=1

Aix

)
0 =

m∑
i=1

ωi(−yi/ωi − Bx)

⇔
(
∃ (yi)1≤i≤m ∈

m×
i=1

Aix

)
− (y1/ω1, . . . , ym/ωm)− j(Bx) ∈ V ⊥

⇔ 0 ∈ A(j(x)) +B(j(x)) +NV (j(x))

⇔ j(x) ∈ zer(A+B +NV ), (27)

which yields the result.

The following algorithm for solving Problem 4.1 is a direct consequence of Corollary 3.1 applied

to the monotone inclusion in Proposition 4.1(v).

Algorithm 4.1 In the context of Problem 4.1, let γ ∈ ]0, 1/χ[, let ε ∈ ]0, 1[, let (λn)n∈N be a sequence

in [ε, 1], let (zi,0)1≤i≤m ∈ Hm, and iterate, for every n ∈ N,

xn :=
∑m
j=1 ωjzj,n

For i = 1, . . . ,m ri,n := zi,n − γBxn

pi,n := JγAi/ωiri,n

qn :=
∑m
j=1 ωjpj,n

For i = 1, . . . ,m
si,n := 2qn − pi,n + zi,n − xn

ti,n := si,n − γBqn

zi,n+1 := zi,n + λn(ti,n − ri,n).

(28)

Theorem 4.1 Let (xn)n∈N be the sequence generated by Algorithm 4.1. Then, xn ⇀ x for some

solution x to Problem 4.1 and xn+1 − xn → 0.
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Proof. Set, for every n ∈ N, xn := j(xn), qn := j(qn), sn := (si,n)1≤i≤m, zn := (zi,n)1≤i≤m, and

pn := (pi,n)1≤i≤m. It follows from Proposition 4.1(i) and (28) that, for every n ∈ N, xn = PV zn

and qn = PV pn = PV sn. Hence, it follows from (26) and Proposition 4.1 that (28) can be written

equivalently as (21). Altogether, Corollary 3.1 and Proposition 4.1(v) yield the results.

Remark 4.1 In the particular case when m = 2, B = 0, and ω1 = ω2 = 1/2, Algorithm 4.1 reduces to

the method in [24, Remark 6.2(ii)] for finding a zero of A1 + A2, which computes the resolvents of A1

and A2 in parallel. When these resolvents are hard to calculate, this method provides an alternative

to the Douglas-Rachford splitting [7].

4.2 Primal-Dual Monotone Inclusions

This section is devoted to the numerical resolution of a very general composite primal-dual monotone

inclusion involving vector subspaces. The proposed algorithm addresses monotone operators composed

with linear transformations, and solves simultaneously primal and dual inclusions.

Let us introduce a partial sum operation with respect to a closed vector subspace. This notion is

a generalisation of the parallel sum (see, e.g., [36] and the references therein).

Definition 4.1 Let H be a real Hilbert space, let U ⊂ H be a closed vector subspace, and let

A : H⇒ H and B : H⇒ H be non-linear operators. The partial sum of A and B with respect to U is

defined by
A�UB :=

(
AU +BU

)
U
. (29)

In particular, we have A�HB = A+B and A�{0}B = A�B = (A−1 +B−1)−1.

The operation A 7→ AU preserves monotonicity [9]. Hence, A�UB is monotone if A and B are

monotone. In this section, we are interested in the following problem.

Problem 4.2 Let H, (Gi)1≤i≤m be real Hilbert spaces, for every i ∈ {1, . . . ,m}, let U ⊂ H and

Vi ⊂ Gi be closed vector spaces, let A : H ⇒ H and Bi : Gi ⇒ Gi be maximally monotone, let

Li : H→ Gi be linear and bounded, let Di : Gi ⇒ Gi be monotone such that (Di)V⊥i is νi-Lipschitzian

for some νi ∈ ]0,+∞[, let C : H→ H be monotone and µ-Lipschitzian for some µ ∈ ]0,+∞[, let z ∈ H,

and let bi ∈ Gi. The problem is to solve the primal inclusion

find x ∈ H such that z ∈ Ax +NUx +
m∑
i=1

(
L∗iPVi(Bi �V⊥i

Di +NVi)PVi(Lix− bi)
)

+ Cx (30)
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together with the dual inclusion: find u1 ∈ G1, . . . , um ∈ Gm such that

(∃ x ∈ H)


z−

∑m
i=1 L

∗
iPViui ∈ Ax + Cx +NUx

(∀i ∈ {1, . . . ,m}) ui ∈ PVi(Bi �V⊥i
Di +NVi)PVi(Lix− bi).

(31)

The set of solutions to (30) and (31) are denoted by P 6= ∅ and D 6= ∅, respectively.

In the particular case when U = H, for every i ∈ {1, . . . ,m}, Vi = Gi, Di0 = Gi, for every

y 6= 0, Diy = ∅, and C = 0, Problem 4.2 is solved in [23,33] via fully split primal-dual algorithms. In

particular, in [33], a proximal point algorithm applied to the partial inverse of a maximally monotone

operator with respect to the kernel of a linear operator is proposed for solving Problem 4.2. On the

other hand, when U = H and, for every i ∈ {1, . . . ,m}, Vi = Gi, Problem 4.2 is solved by a splitting

method proposed in [27]. To the best of our knowledge, the general case has not been tackled in the

literature via splitting methods.

Problem 4.2 requires a Lipschitzian condition on (DiV⊥i )1≤i≤m. When, for every i ∈ {1, . . . ,m},

Vi = Gi, this condition reduces to the Lipschitzian property on Di
−1, which is trivially satisfied,

e.g., when Di0 = Gi and, for every y 6= 0, Diy = ∅. The next proposition furnishes other non-trivial

instances, in which the partial inverse of a monotone operator is Lipschitzian.

Proposition 4.2 Let V ⊂ H be a closed vector space and suppose that one of the following holds:

(i) D : H→ H is β-strongly monotone and ν-cocoercive.

(ii) D = ∇f, where f : H→ ]−∞,+∞] is differentiable, β-strongly convex, and ∇f is ν−1-Lipschitzian.

(iii) D is a linear bounded operator satisfying, for every x ∈ H, 〈x | Dx〉 ≥ β‖x‖2, and ν = β/‖D‖2.

Then, DV is α-cocoercive and α-strongly monotone with α = min{β, ν}/2. In particular, DV is α−1-

Lipschitzian.

Proof. (i): Let (x, u) and (y, v) in gra(DV). It follows from (2) that (PVx + PV⊥u, PVu + PV⊥x) and

(PVy+PV⊥v, PVv+PV⊥y) are in gra(D), and, from the strong monotonicity assumption on D, we have

〈x− y | u− v〉 = 〈PV(x− y) | PV(u− v)〉+ 〈PV⊥(u− v) | PV⊥(x− y)〉

= 〈PVx + PV⊥u− (PVy + PV⊥v) | PVu + PV⊥x− (PVv + PV⊥y)〉

≥ β‖PVx + PV⊥u− (PVy + PV⊥v)‖2

= β(‖PV(x− y)‖2 + ‖PV⊥(u− v)‖2). (32)
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Analogously, the cocoercivity assumption on D yields 〈x− y | u− v〉 ≥ ν(‖PV(u−v)‖2+‖PV⊥(x−y)‖2).

Hence, it follows from (32) that

〈x− y | u− v〉 ≥ β

2
(‖PV(x− y)‖2 + ‖PV⊥(u− v)‖2) +

ν

2
(‖PV(u− v)‖2 + ‖PV⊥(x− y)‖2), (33)

which yields 〈x− y | u− v〉 ≥ α
(
‖x − y‖2 + ‖u − v‖2

)
, and the result follows. (ii): From the strong

convexity of f, we have that D = ∇f is β-strongly monotone and, from [37], it is ν-cocoercive. Hence,

the result follows from (i). (iii): Since D is linear and bounded, we have ‖x‖2 ≥ ‖Dx‖2/‖D‖2. Then, D

is β-strongly monotone and ν-cocoercive and the result follows from (i).

The following proposition gives a connection between Problem 4.2 and Problem 3.1.

Proposition 4.3 Set H := H⊕G1⊕ · · · ⊕Gm, set χ := max{µ, ν1, . . . , νm}+
√∑m

i=1 ‖Li‖2, and set

A : H⇒ H : (x, u1, . . . , um) 7→ (−z + Ax)× (PV1
b1 + (B1)V⊥1 u1)× · · · × (PVmbm + (Bm)V⊥mum)

L : H → H : (x, u1, . . . , um) 7→

(
m∑
i=1

L∗iPViui,−PV1
L1x, . . . ,−PVmLmx

)

C : H → H : (x, u1, . . . , um) 7→
(
Cx, (D1)V⊥1 u1, . . . , (Dm)V⊥mum

)
B : H → H : (x, u1, . . . , um) 7→ (C + L)(x, u1, . . . , um)

W := U× V1 × · · · × Vm. (34)

Then, the following hold:

(i) A is maximally monotone and, for every γ ∈ ]0,+∞[,

JγA : (x, u1, . . . , um) 7→
(
JγA(x + z), Jγ(B1)

V⊥1
(u1 − PV1

b1), . . . , Jγ(Bm)
V⊥m

(um − PVmbm)
)
. (35)

(ii) L is linear, bounded, L∗ = −L, and ‖L‖ ≤
√∑m

i=1 ‖Li‖2.

(iii) B is monotone and χ-Lipschitzian.

(iv) W is a closed vector subspace of H, NW : (x, u1, . . . , um) 7→ NUx × NV1
u1 × · · · × NVmum, and

PW : (x, u1, . . . , um) 7→ (PUx, PV1
u1, . . . , PVmum).

(v) zer(A+B +NW ) ⊂ P ×D.

(vi) P 6= ∅ ⇔ zer(A+B +NW ) 6= ∅ ⇔ D 6= ∅.

Proof. (i): Since, for every i ∈ {1, . . . ,m}, (Bi)V⊥i is maximally monotone, the result follows from [30,

Proposition 23.15 and Proposition 23.16]. (ii): Let us define M : (u1, . . . , um) 7→
∑m
i=1 L

∗
iPViui. Since
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(Li)1≤i≤m and (PVi)1≤i≤m are linear bounded operators, M is linear and bounded and, for every x ∈ H,

M∗x = (PV1
L1x, . . . , PVmLmx). Since L can be written as L : (x, u1, . . . , um) 7→ (M(u1, . . . , um),−M∗x),

we deduce from [23, Proposition 2.7(ii)] that L is linear and bounded, that L∗ = −L, and that

‖L‖ = ‖M‖. Now, for every (u1, . . . , um) ∈ G1⊕· · ·⊕Gm, we have from triangle and Hölder inequalities

that ‖M(u1, . . . , um)‖ ≤
∑m
i=1 ‖Li‖‖PVi‖‖ui‖ ≤

∑m
i=1 ‖Li‖‖ui‖ ≤

√∑m
i=1 ‖Li‖2

√∑m
i=1 ‖ui‖2. (iii):

Since (ii) implies that L is linear, bounded, and skew, it is monotone and ‖L‖-Lipschitzian. Moreover,

because C and (Di)V⊥i are monotone and Lipschitzian, C is monotone and Lipschitzian with constant

max{µ, ν1, . . . , νm}. Altogether, B = C + L is monotone and χ-Lipschitzian. (iv): Clear. (v): Let

(x, u1, . . . , um) ∈ H× G1 × · · ·Gm. From (34) and Proposition 2.1, we obtain

(x, u1, . . . , um) ∈ zer(A+B +NW )

⇔



0 ∈ −z + Ax + Cx +
∑m
i=1 L

∗
iPViui +NUx

0 ∈ PV1
b1 + (B1)V⊥1 u1 + (D1)V⊥1 u1 − PV1

L1x +NV1
u1

...

0 ∈ PVmbm + (Bm)V⊥mum + (Dm)V⊥mum − PVmLmx +NVmum

⇔



0 ∈ −z + Ax + Cx +
∑m
i=1 L

∗
iPViui +NUx

PV1
(L1x− b1) ∈ ((B1)V⊥1 + (D1)V⊥1 +NV1

)u1, u1 ∈ V1

...

PVm(Lmx− bm) ∈ ((Bm)V⊥m + (Dm)V⊥m +NVm)um, um ∈ Vm

⇔



0 ∈ −z + Ax + Cx +
∑m
i=1 L

∗
iPViui +NUx

u1 ∈ PV1
((B1)V⊥1 + (D1)V⊥1 +NV1

)−1PV1
(L1x− b1)

...

um ∈ PVm((Bm)V⊥m + (Dm)V⊥m +NVm)−1PVm(Lmx− bm)

⇔



z−
∑m
i=1 L

∗
iPViui ∈ Ax + Cx +NUx

u1 ∈ PV1
(B1 �V⊥1

D1 +NV1
)PV1

(L1x− b1)

...

um ∈ PVm(Bm �V⊥m
Dm +NVm)PVm(Lmx− bm)

(36)

⇒ z ∈ Ax +NUx +
m∑
i=1

L∗iPVi(Bi �V⊥i
Di +NVi)PVi(Lix− bi) + Cx, (37)
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which yields x ∈ P. Moreover, (36) yields (u1, . . . , um) ∈ D. (vi): If x ∈ P, then there exist (u1, . . . , um)

such that (36) holds and, hence, (u1, . . . , um) ∈ D. Now, if (u1, . . . , um) ∈ D, then there exists x ∈ H

such that (36) holds and, hence, (x, u1, . . . , um) ∈ zer(A+B+NW ). The last implication follows from

(v).

Algorithm 4.2 In the setting of Problem 4.2, let γ ∈ ]0, 1/χ[, where χ is defined in Proposition 4.3,

let (λn)n∈N be a sequence in [ε, 1], let x0 ∈ H, let (ui,0)1≤i≤m ∈ G1 × · · · × Gm, and iterate, for every

n ∈ N, 

r1,n := xn − γPU

(
CPUxn +

∑m
i=1 L

∗
iPViui,n

)
p1,n := JγA(r1,n + γz)

s1,n := 2PUp1,n − p1,n + r1,n − PUr1,n

For i = 1, . . . ,m

r2,i,n := ui,n − γPVi(DiV⊥i PViui,n − LiPUxn)

p2,i,n := JγBiV⊥
i

(r2,i,n − γPVibi)

s2,i,n := 2PVip2,i,n − p2,i,n + r2,i,n − PVir2,i,n

t2,i,n := s2,i,n − γPVi(DiV⊥i PVis2,i,n − LiPUs1,n)

ui,n+1 := ui,n + λn(t2,i,n − r2,i,n)

t1,n := s1,n − γPU

(
CPUs1,n +

∑m
i=1 L

∗
iPVis2,i,n

)
xn+1 := xn + λn(t1,n − r1,n).

(38)

Theorem 4.2 Let (xn)n∈N and (u1,n)n∈N, . . . , (um,n)n∈N be the sequences generated by Algorithm 4.2.

Then, xn ⇀ x ∈ H, xn+1 − xn → 0, for every i ∈ {1, . . . ,m}, ui,n ⇀ ui ∈ Gi, ui,n+1 − ui,n → 0, and

(PUx, PV1
u1, . . . , PVmum) is a solution to Problem 4.2.

Proof. By defining, for every n ∈ N, zn := (xn, u1,n, . . . , um,n), rn := (r1,n, r2,1,n, . . . , r2,m,n),

pn := (p1,n, p2,1,n, . . . , p2,m,n), sn := (s1,n, s2,1,n, . . . , s2,m,n), and tn = (t1,n, t2,1,n, . . . , t2,m,n), it

follows from Proposition 4.3 that (38) is a particular instance of (21). Hence, the results follow from

Corollary 3.1 and Proposition 4.3(v).
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Remark 4.2

(i) Even if Problem 4.1 can be seen as a particular case of Problem 4.2, the methods in (38) and (28)

have different structures. Indeed, in (38), dual variables are updated at each iteration, which may

be numerically costly in large scale problems. Only primal variables are updated in Algorithm 4.1.

(ii) Algorithm 4.2 activates each operator involved in Problem 4.2 independently. The algorithm is

explicit in each step if the resolvents of A and (BiV⊥i )1≤i≤m can be computed. Observe that the re-

solvent of the partial inverse of a monotone operator can be explicitly found via Proposition 3.1(i).

(iii) Note that, when λn ≡ 1, U = H, and, for every i ∈ {1, . . . ,m}, Vi = Gi, Algorithm 4.2 reduces to

the method in [27, Theorem 3.1] with constant step-size.

(iv) In the simplest case when m = 2, z = A = C = b1 = b2 = 0, L1 = L2 = Id, U = H, V1 ≡ G1,

V2 ≡ G2, D10 = G1, D20 = G2, and for every y 6= 0, D1y = D2y = ∅, we have, for every i ∈ {1, 2},

DiV ⊥i = Di{0} = D−1
i : y 7→ 0, Problem 4.2 reduces to find a zero of B1 + B2, and (38) becomes

(∀n ∈ N)



p1,n = JγB−1
1

(u1,n + γxn)

p2,n = JγB−1
2

(u2,n + γxn)

xn+1 = xn − γλn(p1,n + p2,n)

u1,n+1 = (1− λn)u1,n + λn
(
p1,n − γ2(u1,n + u2,n)

)
u2,n+1 = (1− λn)u2,n + λn

(
p2,n − γ2(u1,n + u2,n)

)
.

(39)

This method solves this problem and its dual, simultaneously, and differs from the algorithm

derived in Remark 4.1.

4.3 Zero-Sum Games

Our last application is devoted to the problem of finding a Nash equilibrium in continuous zero-sum

games. Some comments on finite zero-sum games are also provided. This problem can be formulated

in the form of Problem 3.1, and it can be solved via an algorithm derived from Algorithm 3.1.

Problem 4.3 For every i ∈ {1, 2}, let Hi and Gi be real Hilbert spaces, let Ci ⊂ Hi be closed and

convex, let Li : Hi → Gi be a linear bounded operator with closed range, let ei ∈ Hi, set bi := Liei,

set Si :=
{
x ∈ Ci : Lix = bi

}
, let χ ∈ ]0,+∞[, and let f : H1 × H2 → R be a differentiable function

with a χ–Lipschitzian gradient such that, for every z1 ∈ H1, f(z1, ·) is concave and, for every z2 ∈ H2,
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f(·, z2) is convex. Moreover, suppose that int(C1− e1)∩ ker L1 6= ∅ and int(C2− e2)∩ ker L2 6= ∅. The

problem is to

find x1 ∈ S1 and x2 ∈ S2 such that


x1 ∈ Argmin

z1∈S1

f(z1, x2)

x2 ∈ Argmax
z2∈S2

f(x1, z2),

(40)

under the assumption that solutions exist.

Problem 4.3 is a generic zero-sum game, in which the sets S1 and S2 are usually convex bounded

sets representing mixed strategy spaces. For example, if, for every i ∈ {1, 2}, Hi = RNi , Ci is the

positive orthant, Gi ≡ R, bi ≡ 1, and Li is the sum of the components in RNi , then Si is the simplex

in RNi . In that case, for a bilinear function f, Problem 4.3 reduces to a finite zero-sum game. Beyond

this particular case, Problem 4.3 covers continuous zero-sum games, in which mixed strategies are

distributions and L1 and L2 are integral operators.

As far as we know, some alternating methods are proposed in [38,39] for solving Problem 4.3, when

the function f has a special separable structure involving specific coupling schemes. On the other hand,

a method proposed in [40] can solve Problem 4.3 when the projections onto S1 and S2 are computable.

However, in infinite dimension, these projections are not always easy to compute, as we will discuss

in Example 4.1. The following result provides a convergent algorithm for solving Problem 4.3, which

replaces the projections onto S1 and S2 by simpler projections onto C1, C2, ker(L1), and ker(L2). It

is a consequence of Corollary 3.1 when the underlying subspace is V = ker(L1)× ker(L2). Let us first

introduce the generalised Moore-Penrose inverse of a bounded linear operator L : H → G with closed

range, defined by L† : G → H : y 7→ PCy0, where, for every y ∈ G, Cy :=
{
x ∈ H : L∗Lx = L∗y

}
. The

operator L† is also linear and bounded and, in the particular case when L∗L is invertible, we have

L† = (L∗L)−1L∗. For further details and properties, see [30, Section 3].

Algorithm 4.3 In the context of Problem 4.3, let ε ∈ ]0, 1[, let γ ∈ ]0, 1/χ[, let (λn)n∈N be a sequence

in [ε, 1], let (z1,0, z2,0) ∈ H1 ⊕ H2, and iterate, for every n ∈ N,
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u1,n := (Id−L∗1L∗†1 )z1,n + e1

u2,n := (Id−L∗2L∗†2 )z2,n + e2

g1,n := (Id−L∗1L∗†1 )∇
(
f(·, u2,n)

)
(u1,n)

g2,n := −(Id−L∗2L∗†2 )∇
(
f(u1,n, ·)

)
(u2,n)

r1,n := z1,n − γg1,n

r2,n := z2,n − γg2,n

p1,n := PC1
(r1,n + e1)− e1

p2,n := PC2
(r2,n + e2)− e2

v1,n := (Id−L∗1L∗†1 )p1,n

v2,n := (Id−L∗2L∗†2 )p2,n

s1,n := 2v1,n − p1,n + L∗1L
∗†
1 r1,n

s2,n := 2v2,n − p2,n + L∗2L
∗†
2 r2,n

h1,n := (Id−L∗1L∗†1 )∇
(
f(·, e2 + v2,n)

)
(e1 + v1,n)

h2,n := −(Id−L∗2L∗†2 )∇
(
f(e1 + v1,n, ·)

)
(e2 + v2,n)

t1,n := s1,n − γh1,n

t2,n := s2,n − γh2,n

z1,n+1 := z1,n + λn(t1,n − r1,n)

z2,n+1 := z2,n + λn(t2,n − r2,n).

(41)

Theorem 4.3 Let (u1,n, u2,n)n∈N be the sequence generated by Algorithm 4.3. Then, u1,n ⇀ x1 and

u2,n ⇀ x2, where (x1, x2) is a solution to Problem 4.3.

Proof. It follows from [30, Theorem 16.2] that Problem 4.3 can be written equivalently as the problem

of finding x1 and x2 such that 0 ∈ ∂(ιS1
+ f(·, x2))(x1) and 0 ∈ ∂(ιS2

− f(x1, ·))(x2), or, equivalently,

such that 0 ∈ NS1
(x1) +∇

(
f(·, x2)

)
(x1) and 0 ∈ NS2

(x2) − ∇
(
f(x1, ·)

)
(x2) [30, Corollary 16.38]. Now

since, for every i ∈ {1, 2}, Si = Ci∩L−1
i (bi) = Ci∩(ei+ker Li), it follows from qualification conditions

that Problem 4.3 is equivalent to

0 ∈ NC1
(e1 + z1) +Nker L1

(z1) +∇
(
f(·, e2 + z2)

)
(e1 + z1)

0 ∈ NC2
(e2 + z2) +Nker L2

(z2)−∇
(
f(e1 + z1, ·)

)
(e2 + z2), (42)
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where z1 := x1 − e1 and z2 := x2 − e2. Hence, by defining V := ker(L1) × ker(L2) and, for every

(z1, z2) ∈ H1 × H2,

A(z1, z2) := NC1×C2
(e1 + z1, e2 + z2) and B(z1, z2) :=

 ∇(f(·, e2 + z2)
)
(e1 + z1)

−∇
(
f(e1 + z1, ·)

)
(e2 + z2)

 , (43)

Problem 4.3 is equivalent to find z1 ∈ H1 and z2 ∈ H2 such that 0 ∈ A(z1, z2)+B(z1, z2)+NV (z1, z2).

Note that V is a closed vector subspace of H1×H2, A is maximally monotone [30, Proposition 20.22],

and B is monotone ([30, Proposition 20.22] and [41]). Moreover, since ∇f is χ-Lipschitzian, B is

also χ-Lipschitzian. On the other hand, it follows from [30, Proposition 3.28(iii)] and [30, Propo-

sition 23.15(iii)] that, for every (z1, z2) ∈ H1 × H2, PV (z1, z2) =
(
z1 − L∗1L

∗†
1 z1, z2 − L∗2L

∗†
2 z2

)
,

JγA(z1, z2) =
(
PC1

(z1 + e1) − e1, PC2
(z2 + e2) − e2

)
, and we deduce that (41) is a particular case

of (21) when A, B, and V are defined as before. Altogether, the result follows from Corollary 3.1.

Remark 4.3 The proposed method does not need to compute the projection onto S1 and S2 at each

iteration, but it converges to solution strategies belonging to these sets. This new feature is very useful

when the projection onto S1 and S2 are not easy to compute.

Example 4.1 We consider a 2-player, zero-sum game, where X1 ⊂ RN1 is a bounded set of pure strate-

gies for player 1 and S1 :=
{
f ∈ L2(X1) : f ≥ 0 a.e.,

∫
X1
f(x)dx = 1

}
is her set of mixed strategies

(X2, N2, and S2 are defined likewise). We recall that L2(X) stands for the set of square-integrable

functions f : X ⊂ Rn → ]−∞,+∞]. Moreover, let F ∈ L2(X1 ×X2) be a function representing the

payoff for player 1 and let −F be the payoff of player 2. The problem is to

find f1 ∈ S1 and f2 ∈ S2 such that


f1 ∈ Argmin

g1∈S1

∫
X1

∫
X2

F (x1, x2)g1(x1)f2(x2)dx2dx1

f2 ∈ Argmax
g2∈S2

∫
X1

∫
X2

F (x1, x2)f1(x1)g2(x2)dx2dx1.

(44)

Note that S1 and S2 are closed and convex sets in L2(X1) and L2(X2), respectively. Hence, the projec-

tion of any square-integrable function onto S1 or S2 is well defined. However, these projections are not

easy to compute. A possible way for avoiding the explicit computation of these projections is to split S1

and S2 in S1 = C1∩(e1 +ker L1) and S2 = C2∩(e2 +ker L2), as in the proof of Theorem 4.3, where, for

every i ∈ {1, 2}, Hi := L2(Xi), Ci :=
{
f ∈ Hi : f ≥ 0 a.e.

}
, ei := (mi(Xi))

−1, Li : f 7→
∫
Xi
f(x)dx,
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and mi(Xi) is the Lebesgue measure of the set Xi. Moreover, define the bilinear differentiable function

f : (f1, f2) 7→
∫
X1

∫
X2
F (x1, x2)f1(x1)f2(x2)dx2dx1. It follows from F ∈ L2(X1 ×X2) that

∇f : (f1, f2) 7→
(∫

X2

F (·, x2)f2(x2)dx2,

∫
X1

F (x1, ·)f1(x1)dx1

)
∈ H1 × H2, (45)

and that ∇f is χ-Lipschitzian with χ := ‖F‖L2(X1×X2). Thus, (44) is a particular instance of Prob-

lem 4.3. Note that, for every i ∈ {1, 2}, L∗i : R→ L2(Xi) : ξ 7→ δξ, where, for every ξ ∈ R, δξ : x 7→ ξ is

the constant function. Moreover, Li ◦ L∗i : ξ → mi(Xi)ξ is invertible and (Li ◦ L∗i )−1 : ξ 7→ ξ/mi(Xi),

which yields Id−L∗i L∗†i = Id−L∗i (Li ◦ L∗i )−1Li : f 7→ f − δf̄ , where f̄ =
∫
Xi
f(x)dx/mi(Xi) is the

mean value of f . In addition, for every i ∈ {1, 2}, PCi : f 7→ f+ : t 7→ max{0, f(t)}. Altogether, Algo-

rithm 4.3 applied to this instance is a fully split method for solving (44). In the particular case when

X1 and X2 are finite sets of actions (or pure strategies), S1 and S2 are finite dimensional simplexes,

F : (x1, x2) 7→ x>1 Fx2, and F is a payoff matrix, Algorithm 4.3 provides a first order method for find-

ing Nash equilibria in the finite zero-sum game (for complements and background on finite games,

see [42])

find x1 ∈ S1 and x2 ∈ S2 such that


x1 ∈ Argmin

y1∈S1

x>1 Fx2

x2 ∈ Argmax
y2∈S2

x>1 Fx2.

(46)

When a large number of pure actions are involved (e.g., Texas Hold’em poker), classical linear program-

ming methods for solving (44) are enormous and unsolvable via standard algorithms as simplex. Other

attempts use acceleration schemes for obtaining good convergence rates [21]. However, the proposed

method does not guarantee the convergence of the iterates. Algorithm 4.3 is an explicit convergent

method that solves (46) overcoming previous difficulties. Numerical simulations and comparisons with

other methods are part of further research.

5 Conclusions

We provide a fully split algorithm for finding a zero of A + B + NV . The proposed method exploits

the intrinsic properties of each of the operators involved, by explicitly activating the single-valued

operator B and by computing the resolvent of A and projections onto V . Weak convergence to a zero

of A + B + NV is guaranteed and the flexibility of our framework is illustrated via applications to
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monotone inclusions involving m maximally monotone operators, to primal-dual composite inclusions

involving partial sums of monotone operators, and continuous zero-sum games. It is worth mentioning

that the three applications studied in this paper use different closed vector subspaces: the diagonal

vector subspace in a product Hilbert space, the product of vector subspaces, and the kernel of a linear

bounded operator. In addition, it follows from Remark 3.2(iii) that it is possible to tackle very complex

monotone inclusions, including compositions with linear operators, by using the kernel of appropriate

bounded linear operators as closed vector subspaces. The influence of the linear operators of the

original inclusion can be split from the other operators involved via these closed vector subspaces.

The resulting algorithm shall need to compute inverses of suitable linear operators, which can be

obtained easily without perturbing the efficiency of the method in several cases [33]. Altogether,

the flexibility of the vector subspace setting gives a promising future to splitting methods involving

this feature. It is part of further research to study the performance of the methods under specific

assumptions of each problem. On the other hand, the partial sum of two set-valued operators with

respect to a closed vector subspace is introduced. This operation preserves monotonicity, and further

study will be done in this direction in future work. Finally, in zero-sum games, a splitting method is

provided for computing Nash equilibria. The algorithm replaces the projections onto mixed strategy

spaces by simpler projections.
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