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The agents’ decisions, from their residential location to their members’ trip choices through
the network, are jointly analyzed as an integrated long term equilibrium in which the loca-
tion, travel decisions, and route choices are represented by logit or entropy models. In this
approach, consumers optimize their combined residence and transport options repre-
sented as paths in an extended network built by connecting the transport sub-network
to a fictitious sub-network that represents land-use and transport demand options. We
model a static land-use and transport equilibrium by considering road congestion and
location externalities. The latter include trip destination choices based on land-use attrac-
tions, as well as endogenous neighborhood characteristics that determine residential
choices and segregation phenomena. The model can deal with heterogeneous populations
and locations as well as multiple trip purposes, though it assumes only private transport
modes. In a previous paper we studied the case with road congestion externalities only,
characterizing equilibria by a strictly convex and coercive unconstrained minimization
problem. This characterization fails for more general externalities, so we restate the model
as a fixed-point problem, establishing the existence of equilibria, providing sufficient
conditions for its uniqueness and for the convergence of a fixed-point iteration. A small
numerical example is used to illustrate the model.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

One of the complexities in modeling big urban areas for planning purposes is to properly represent the interaction be-
tween the transportation system and the spatial distribution of residential and non-residential activities. This connection
is twofold. On the one hand, the spatial pattern of activities represents a major determinant of generation and attraction
of trips from/to each zone; while conversely, the transportation system is a relevant input for location decisions through
the accessibility determined by the transport network and the demand conditions. Changes in land-use directly affect the
transportation demand patterns, which in turn modify accessibility and location decisions, and so on. This process can be
described either by the dynamic interaction between both sub-systems or by analyzing the global equilibrium of the com-
bined land-use and transport system (LU&T).

Typically, land-use models include the effect of the transport system through generalized transportation costs which are
taken as fixed for the location equilibrium mechanism. These costs are in turn obtained from network assignment models
computed for a fixed location pattern. The system is simulated by iterative calculations of partial equilibrium of land-use
on the one hand and transport on the other, leading to the so-called interactive or bi-level models. This approach does not
. All rights reserved.
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provide a clear framework to analyze the existence and uniqueness of equilibria, while the iterations are not guaranteed to
converge, with a further practical difficulty in terms of the high computational cost involved in the calculations.

An integrated LU&T model poses the challenge of solving simultaneously the internal conflicts within the transport and
land-use sub-systems along with their interactions, namely

� Location externalities within the land-use sub-system: Conditional on the transport costs (accessibility), the location process
depends on the built environment (buildings density) and the land-use that determines neighborhoods’ amenities. Econ-
omists call these interactions location externalities, to emphasize that the location decision of one agent affects the util-
ities and decisions of others.

� Congestion externalities within the transport sub-system: Conditional on the location decisions taken as an exogenous factor,
road congestion is an internal interaction among users in the transport sub-system where each route choice decision
affects the travel time of all other users on the same route.

� Trip attraction: The choice of the trip destination is a decision that depends on both the activities located at each alterna-
tive spatial destination and the transportation costs.

These elements are mutually dependent and induce a price system that includes land rents and transport monetary costs.
Moreover, consumer’s time is a scarce resource that has to be rationally allocated by taking optimal decisions regarding spa-
tial choices (residence and trip destinations) and transport choices (mode and route). An integrated equilibrium should con-
sider these interactions and resource constraints, attaining all equilibrium conditions simultaneously. The major goal of the
paper is to search for sufficient conditions to ensure the existence of equilibrium in the integrated system (land-use–trans-
port) considering such interactions. Based on known approaches to model each stage, we formulate an integrated model that
allows us to find such equilibrium including the added complexity caused by location externalities. Actually, to find a set of
such conditions that can be mathematically verified is not a trivial problem in a context with externalities.

We build upon the integrated LU&T framework proposed in Briceño et al. (2008) using an extended network that expands
the transport sub-network with additional nodes and arcs that represent land-use and transport demand options. In that
model, the location, travel, and route choices are represented by Logit or entropy models, leading to a variational inequality
for the simultaneous equilibrium of land-use, trip generation, distribution and network assignment, although only one trans-
port mode – private car – is considered.1 Equilibrium is represented through location and travel flows in the extended network,
considering the effect of road congestion but ignoring the externalities associated with the location of agents (that can be house-
holds and firms). This simplified framework – adequate for short and medium term studies if one considers that land-use inter-
actions evolve at a slower pace than transport – allows characterizing the global system equilibrium by an equivalent strictly
convex optimization problem. This yields the existence and uniqueness of equilibria under weak assumptions, and leads to a
globally convergent solution algorithm. The optimality conditions reproduce the equilibrium of two previous models: the Ran-
dom Bidding and Supply Model (RB&SM) in Martínez and Henríquez (2007) for land-use equilibrium and the Markovian Traffic
Equilibrium (MTE) in Baillon and Cominetti (2008) for private transport network assignment.

Our goal in the present work is to generalize Briceño et al.’s framework by adding location externalities to the model,
while preserving the Logit structure for the individuals’ choices. This generalized model recognizes that land-use external-
ities are an important feature when considering long term location decisions of agents. In the case of households, location
choices of certain socioeconomic group members are affected by the socioeconomic characteristics of the neighbors resulting
in segregation. In the case of firms, the interactions may either provide incentives to concentrate the activities at a given
location in the form of agglomeration economies, or to disperse for competitive reasons. The extended network modeling ap-
proach is flexible enough to incorporate, in a coherent way, these multiple interactions in the urban system, including those
associated with the movement of things and people (called transport), the location of activities (called land-use), as well as
economic and social interactions. However, the model no longer has an equivalent optimization problem. Instead, we state
the model as a multidimensional fixed point which integrates both sub-systems. Using this formulation we establish the
existence of equilibria, we provide sufficient conditions for its uniqueness, and we propose a solution algorithm that con-
verges towards equilibrium under appropriate assumptions.

The paper is structured as follows. In the next section, we briefly review some previous models dealing with the LU&T
interactions, as well as the works which form the building blocks for our model. Section 3 describes the fixed-point formu-
lation of the integrated LU&T equilibrium and presents the main results. In particular, Section 3.2 summarizes the additional
properties that hold if one ignores location externalities, highlighting the equivalent optimization problem and how the cor-
responding optimality conditions reproduce the equilibrium in the land-use and transport markets. In Section 4 we report
some small-sized simulation results to illustrate the model.
2. Brief literature overview

Several models dealing with the interaction between land-use and transportation are found in the literature. The survey
by Chang (2006) categorizes the models in Spatial Interaction, Mathematical Programming, Random Utility and Bid-Rent
1 Capacity constraints in public transport modes introduce significant additional complexities that require further research.
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models. With the exception of the integrated LU&T model in Briceño et al. (2008) mentioned above, these models correspond
to some form of interactive or bi-level approach often motivated by iterative computational schemes.

A bi-level approach was proposed in Chang and Mackett (2005). At the upper level, the location problem is faced under a
bid-rent approach by computing the accessibility and attractiveness of the zones. At the lower level, the network decisions
are made taking into account the access measures imposed by the upper level. This procedure, however, does not ensure the
existence of equilibria. Another model of this type is the one proposed by Boyce and Mattsson (1999). They show that there
exists a unique joint land-use and transport equilibrium for one household type and considering only one trip per household,
a Walsarian-type of land-use equilibrium and a deterministic network assignment. The equilibrium is the optimum of the
maximization of a strictly concave function defined in a large dimension space because of the route-based framework. In
this model consumers’ interactions are limited to the household’s perception of the land-use density. In the present paper,
we improve the treatment of the space dimension by considering an arc-based framework in the transport stochastic assign-
ment that allows us to work with larger networks and a more realistic variability on travel cost perceptions. In addition, we
consider different types of households and their number of generated trips and we also consider a more general way to mod-
el the externalities in the location market as well. Nagurney and Dong (2002) propose an integrated model expanding the
transport network by including location choice links and formulating a location-assignment problem as a variational
inequality that reproduces Wardrop’s conditions. In this model, however, the land-use market does not attain equilibrium
on land prices nor on externalities. Thus, as far as we know, the analysis of an integrated LU&T equilibrium with externalities
remains open.

A first aspect for an integrated LU&T formulation is to properly model the trip structure. The spatial interaction model
proposed by Lowry (1964) and later generalized by Wilson (1970), introduces impedances between zones through explicit
cost functions and postulates a model based on the maximization of the system’s entropy, introducing a relative measure of
the zone attractiveness but considering fixed travel costs between zones. LU&T interactions may also be quantified by access
measures derived from a microeconomic analysis as shown in Martínez (1995), and which allow to identify the relationship
between user benefits from both the land-use and the transport systems (Martínez and Araya, 2000). These measures com-
pute the transport benefits associated to origin and destination zones (accessibility and attractiveness) using a doubly con-
strained spatial interaction model.

A second feature to be considered is a mechanism to model the location decisions. For the present work, we adopt the RB&SM
in Martínez and Henríquez (2007) which extends the Random Bidding Model by Martínez and Donoso (2001). In this framework,
real estate transactions are commanded by an auction mechanism under the best bid rule, while the behavior of the decision
makers is described by the willingness-to-pay for each location as proposed by Alonso (1965). A related land-use model within
the spatial interaction approach is the doubly constrained entropy model proposed by Roy (2004), similar to the one by Wilson
(1970) with the difference that in this case the location is determined by the agents’ willingness-to-pay. This model yields the
same logit probabilities proposed by Ellickson (1981) since the entropy maximization approach and the multinomial Logit are
equivalent when parameters are estimated by a maximum likelihood method (Anas, 1981). Hence, the RB&SM may also be de-
rived from an entropy maximization problem. These land-use models find the equilibrium considering the transport system and
its interaction with the land-use market but, in all cases, the transport costs are exogenously determined.

The third component is a trip assignment mechanism to determine the route followed by each trip once mode and des-
tination have been chosen (see Ortúzar and Willumsen, 1994). Traffic assignment has been traditionally modeled either by
using Wardrop’s conditions in a determinist setting or stochastic user equilibrium (Sheffi, 1985). In contrast with these
route-based models, Baillon and Cominetti (2008) propose a Markovian equilibrium model for stochastic assignment in
which route choice emerges from a chain of decisions where, at each intermediate node in his trip and regardless of the deci-
sions taken before, the traveler uses a discrete choice model to decide the next arc to take in order to minimize his expected
travel time-to-destination. As it follows from Akamatsu (1997), in a special case of Logit models with spatially uniform var-
iance, this equilibrium is related (though not equivalent) to the stochastic user equilibrium.
3. Integrated land-use and transport model

3.1. General framework

The main goal of this work is to specify an integrated LU&T model and to prove existence of a static equilibrium for loca-
tion, generation, distribution and assignment, considering externalities both in transport and location. In what follows, we
focus the analysis on residential location and transportation problems; agents are households and individual travelers for the
former and latter case, respectively. The modeling strategy is as follows. Consider an agent searching for a location and
whose decision is affected by land-use externalities (which other agents are located at the zone and the quality of real estate
infrastructure in the zone) as well as transport externalities imposed by the generation/distribution of trips and their assign-
ment on the physical network. The transport equilibrium depends on the trip generation which depends in turn on the loca-
tion of agents throughout the city. The presence of positive externalities does not allow characterizing the equilibrium by an
optimization problem, so we use a fixed point approach by splitting the problem into: generation, distribution/assignment,
and land-use equilibrium. Each stage captures the specific economic properties and internal interactions of one sub-system,
while their coupling defines the global system equilibrium as a multidimensional fixed-point equation. Once the fixed point
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Fig. 1. Extended network representation of the urban system.
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is properly stated to reflect the externalities across the whole system, the existence of equilibrium follows directly from
Brower’s theorem. Fig. 1 below provides a graphical representation of the urban system viewed as an extended network,
highlighting interactions among sub-systems.

A glossary of data and variables used to describe the model is as follows:

Exogenous data
N set of nodes in the transport network
A set of arcs in the transport network
D # N set of nodes representing destinations zones2 d e D
I # N set of nodes representing zones i e I where agents can get a location
C set of fictitious nodes representing agent types h e C searching for a place to be located
Hh total number of agents of type h e C
Si total supply of real estate units at zone i e I
Nd

h number of trips generated from an agent of type h with destination d
sa(�) flow-dependent travel time function of arc a e A
be

hið�Þ externality term of the willingness-to-pay function for agent type h e C dependant on zone i e I
cd(�) location externality function for trip attraction at destination d e D
udh

i ð�Þ discrete choice expected travel time from i e N to d e D for agent type h e C
State variables
t = (ta) with ta the travel time on arc a
w = (wa) with wa the total flow on arc a
v ¼ ðvdh

a Þ with vdh
a the flow of type h on arc a with destination d

g ¼ ðgdh
i Þ with gdh

i the trips from i to d generated by agents of type h
H = (Hhi) with Hhi the number of agents of type h located at zone i
O = (Ohi) with Ohi the number of trips generated by agents of type h from zone i
bu ¼ ðbu

hÞ with bu
h a monetary utility index for agents of type h

a = (ahi) with ahi the Lagrange multipliers in the entropy model singly constrained on the trips generated by agents of type h at
zone i (see details in Section 3.3)

r = (ri) with ri the real estate rent in zone i

Transport externalities are included in the maps sa:IR ? IR that give the arc travel times as strictly increasing continuous
functions or the total arc flows wa, namely
2 Phy
indistin
ta ¼ saðwaÞ ð1Þ
sical space is represented by zones, and zones are represented by nodes in the extended network. Thus, hereafter, we refer to zones and nodes
ctively.
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Similarly, location externalities are incorporated through the following term of the willingness-to-pay maps
be
hi : IR3jCkIj � IRjAj ! IR
that represent type h’s valuation of zone i’s attributes determined by the location variables H, the trip generation matrix O,
the accessibility a obtained as the Lagrange multipliers of a singly constrained entropy model (see Section 3.3.2), and the
travel times t. These maps, assumed of class C2, embed the interactions between transport and land-use. The location deci-
sions are represented by H, which also provide the information required to calculate those attributes that define location
externalities, while the interaction between land-use and transport is included as a functional dependency on the trips’ gen-
eration matrix O and the travel times t that reflect the congestion on the transport network. The total willingness-to-pay bhi,
representing the bids of an agent of type h for a location at zone I, is composed by the externality and the utility terms:
bhi ¼ be
hiðH;O;a; tÞ � bu

h ð2Þ
where the variable �bu
h is the monetary disutility (less utility for higher bids) that endogenously adjusts the bids to ensure

that all agents get located somewhere. Following Martínez and Henríquez (2007), this term is separable in the bid function as
a direct consequence of assuming that the consumer’s utility function underlying the willingness-to-pay function is quasi-
linear.

The proposed fixed-point approach is as follows. We start from a given location matrix H in a simplex determined by total
agents by type, total real estate supply, and non-negativity constraints. From this H, we compute the trip generation O by
evaluating a simple affine function, after which the network assignment along with the trip distribution problems are solved
simultaneously to obtain the transport network flows together with the arc travel times t. These are used in turn to evaluate
the externality willingness-to-pay functions be

hi that enter the land-use equilibrium mechanism where utility bu
h adjusts to

ensure that all agents are located, producing a new location matrix ~H. Equilibrium is attained when this final location pattern
~H coincides with the initial one H, which yields a fixed-point equation that connects the sub-problems. In order to state the
model, we begin in Section 3.2 by summarizing the case without location externalities, while in Section 3.3 each stage of the
equilibrium procedure is presented highlighting their interactions. Section 3.3.4 analyzes the integrated LU&T equilibrium
by putting all pieces together.

3.2. The model without location externalities

The Markovian traffic equilibrium (MTE) studied in Baillon and Cominetti (2008), is a stochastic traffic flow assignment
model on a private transportation network for a given trip distribution gdh

i P 0. In this setting, passengers travel to their des-
tination by a recursive procedure in which an exit arc is randomly selected at every intermediate node in a trip, using a dis-
crete choice model that seeks to minimize the expected time-to-destination. The expected travel times sdh

i ¼ sdh
i ðtÞ from

zone i to destination d for users of type h, are defined as the unique solution of the system of equations
sdh
i ¼ udh

i ðta þ sdh
ja

: a 2 Aþi Þ 8i 2 N ð3Þ
where Aþi is the set of arcs whose tail node is i, ja denotes the head node of arc a, and the maps udh
i ð�Þ characterize the discrete

choice models used at that node. These maps belong to the class n of functions that can be expressed as an expected value of
the form
uðxÞ ¼ IEðminfx1 þ e1; . . . ; xn þ engÞ
where the �ek’s are random with continuous density and IE(ek) = 0. For iid Gumbel variables we obtain the usual log–sum
expression uðxÞ ¼ � 1

b ln½
P

k expð�bxkÞ�.
The MTE is characterized as the optimal solution of the problem
min
t

UðtÞ ¼
X
a2A

Z ta

t0
a

s�1
a ðzÞdz�

X
h2C

X
d2D
i–d

gdh
i sdh

i ðtÞ ð4Þ
which turns out to be convex and coercive under the assumption
ðP0Þ
� the functions udh

i ð�Þ are of class C3 and belong to the class n with udh
d ð�Þ � 0;

� sað�Þ is strictly increasing and continous with lim
x!1

saðxÞ ¼ 1;

� t0
a ¼ sað0ÞP 0 and udh

i ðt0Þ > 0 for all i – d

8>><
>>:
The optimality conditions for (4) yield the equilibrium conditions
s�1
a ðtaÞ ¼

X
d2D;h2C

vdh
a ¼ wa ð5Þ
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where wa represents the total expected flow traversing the arc a since the expected flow of type h on arc a with destination d
is given by (see Baillon and Cominetti, 2008)
3 Her
4 Her

conditio
vdh
a ¼

X
i2I

gdh
i
@sdh

i

@ta
ð6Þ
Briceño et al. (2008) generalize the MTE model by considering an extended network in which fictitious arcs and nodes are
added in order to represent the agents’ location decisions and trip distribution. They modify the original MTE objective func-
tion to characterize the integrated LU&T equilibrium. In this formulation, the number of trips generated is constant for each
agent type, while the destination in the transport network is implicitly decided by the optimal path. Location externalities
are exogenous to the equilibrium process, so that a simpler expression for the externality willingness-to-pay is postulated as
be
hiðtÞ ¼ zhi �

X
d2D

Nd
hs

dh
i ðtÞ
where zhi captures how an agent of type h values the attributes and location amenities of zone i, while the transport exter-
nalities appear in the second term with Nd

h the number of trips to destination d generated by an agent of type h, and shd
i ðtÞ the

expected travel time from i to d as before. The integrated LU&T equilibrium is characterized by the problem
min
t;r;b

Uðt; r; bÞ ¼
X
a2A

Z ta

t0
a

s�1
a ðzÞdzþ

X
h2C

Hhbu
h þ

X
i2I

Siri þ
1
l
X
h2C
i2I

exp½lðbe
hiðtÞ � bu

h � riÞ� ð7Þ
which is strictly convex and coercive provided that (P0) holds together with
ðP1Þ
X
i2I

Si ¼
X
h2C

Hh;

ðP2Þ bu
1 ¼ 0:
Condition (P1) states that total real estate supply equals total demand, while (P2) is a normalization to remove the inde-
termination that results from (P1) since the objective function in (7) is invariant to shifts in bu and r: U(t, r, bu) = U(t, r � c,

bu + c) for all c e IR.3 The optimality conditions reproduce the MTE Eqs. (5) and (6) in the transport system with gdh
i ¼ Nd

hHhi, as
well as the land-use equilibrium reflected by the fact that all agents are located, namely

P
ieIHhi = Hh. Here Hhi = SiPh/i represents

the total number of agents of type h located at zone i as described by a RB&SM in the bid-rent market, with the probability Ph/i

for an agent of type h to be the best bidder at zone i given by
Ph=i ¼
exp½lðbe

hiðtÞ � bu
hÞ�P

g2C exp½lðbe
giðtÞ � bu

gÞ�
ð8Þ
3.3. The model with location externalities

In order to introduce location externalities to the integrated LU&T equilibrium, we restate the model as a fixed-point
problem on the polytope of feasible locations defined by
K ¼ fH 2 IRjCkIj : Hhi P 0;
X
i2I

Hhi ¼ Hh 8h 2 C;
X
h2C

Hhi ¼ Si 8i 2 Ig ð9Þ
We first describe the sub-models of generation, distribution/assignment, and location/bid; and then we analyze the inte-
grated LU&T equilibrium as a fixed point of a composition map. As before, we ignore modal choice by assuming only one
private transportation mode.
3.3.1. Trip generation
We denote O = W1(H), where W1 : K ! IRjCkIj maps any given H e K to the trips generated by agents of type h from zone i,

through the simple growth factor model4
Ohi ¼ NhiHhi þ dhi ð10Þ
This model slightly deviates from the traditional fixed rate generation (where Nhi > 0 is assumed given) by adding a min-
imal given constant trip generation dhi > 0, which ensures Ohi P d for some strictly positive d > 0.
e and afterwards, a sum x + c of a vector x and a real c is to be interpreted as a component wise sum.
e, for simplicity a linear model is considered. Nevertheless, this hypothesis can be strongly relaxed, as discussed later in this section. In general, the only
n required is a model like Ohi = fhi (H) with fhi (�) P d > 0 and f of class C1.
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3.3.2. Trip distribution and network assignment
Trip distribution is described by a singly constrained maximum entropy model. Namely, considering as given the total

number Ohi of trips of type h generated from zone i, the trips gdh
i with destination d are obtained by solving the problem
ðPÞ

min
g

P
i2I

P
d2D

P
h2C

cdh
i gdh

i þ
P
h2C

1
lh

P
j2I

P
d2D

gdh
j ðln gdh

j � 1Þ

s:t:P
d2Dgdh

i ¼ Ohi
where cdh
i is the generalized cost of choosing d as destination, with a given Gumbel parameter lh > 0. Equivalently, denoting

ahi the multipliers associated with the total trip constraints we may solve the dual problem
ðDÞ min
a

X
h2C

X
i2I

Ohiahi þ
X
h2C

1
lh

X
i2I

X
d2D

exp½�lhðcdh
i þ ahiÞ�:
We modify this dual formulation to postulate a joint distribution/network-assignment equilibrium described by the fol-
lowing optimization problem
min
a;t

Uða; tÞ ¼
X
a2A

Z ta

t0
a

s�1
a ðzÞdzþ

X
h2C

X
i2I

Ohiahi þ
X
h2C

1
lh

X
i2I

X
d2D

exp �lhðcdh
i ðt;HÞ þ ahiÞ

� �
ð11Þ
where the cost cdh
i ðt;HÞ ¼ sdh

i ðtÞ � cdðHÞ includes the expected travel timesdh
i ðtÞ and the benefits derived from land-use attributes

at location d grouped in the C1 function cd(H). The optimality conditions @U
@ta
¼ 0 reproduce the MTE conditions (5) and (6) with
gdh
i ¼ Ohi � Pd=ih ð12Þ
where
Pd=ih ¼
exp½�lhðsdh

i ðtÞ � cdðHÞÞ�P
k2D exp½�lhðskh

i ðtÞ � ckðHÞÞ�

is the probability of choosing zone d as destination, conditional on trip origin i and agent type h. Similarly, @U

@ahi
¼ 0 gives

Ohi ¼
P

d2D exp½�lhðcdh
i ðt;HÞ þ ahiÞ� which we rewrite as
ahi ¼
1
lh

ln
1

Ohi

X
d2D

exp½�lhðsdh
i ðtÞ � cdðHÞÞ�

 !
ð13Þ
In summary, problem (11) encompasses simultaneously the dual of the singly constrained distribution model and the
MTE model. We denote W2 : IR2jCkIj ! IRjAj the function that assigns to each couple (H, O) the optimal solution of (11), that
is (a, t) = W2(H, O).

Lemma 1. Under assumption (P0) the map W2 is well defined and of class C1.

Proof. For any given pair (O, H) problem (11) is strictly convex as well as coercive (a detailed proof of this Lemma is provided
in Appendix) so there is a unique optimal solution and the map W2 is well defined. Moreover, the Implicit Function Theorem
readily implies that this solution is smooth. h
3.3.3. Best-bid auction and location mechanism
We assume that real estate transactions are commanded by an auction mechanism under the best bid rule. The bids for

zone i are modeled as iid Gumbel variables, with given parameter hi > 0, so that the probability for an agent of type h to set
the highest bid and get located at zone i is
Ph=i ¼
exp½hibhi�P

g2C exp½hibgi�
:

Thus, given a real estate supply Si and denoting be
hi ¼ be

hiðH;O;a; tÞ for brevity, the total number of agents of type h located at
zone i is
~Hhi ¼ Si
exp½hiðbe

hi � bu
hÞ�P

g2C exp½hiðbe
gi � bu

gÞ�
P 0: ð14Þ
Clearly
P

h2C
~Hhi ¼ Si for all i e I so that all the supply is consumed. The bid adjustment mechanism determines the utility

terms bu
h in the agents’ bids to make sure that at the same time all agents are located somewhere,

P
i2I

~Hhi ¼ Hh for all h e C, so
that ~H 2 K: This yields the equations
X
i2I

Si
exp½hiðbe

hi � bu
hÞ�P

g2C exp½hiðbe
gi � bu

gÞ�
¼ Hh 8h 2 C ð15Þ
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which are readily seen to be the optimality conditions for the convex program
min
bu

CðbuÞ ¼
X
h2C

Hhbu
h þ

1
hi

X
i2I

Si ln
X
h2C

exp½hiðbe
hi � bu

hÞ�
 !

: ð16Þ
From (P1) we get C(bu + c) = C(bu) for constant c, so this problem has multiple solutions. However, the normalization (P2)
further restricts the problem by bu

1 ¼ 0 which becomes strictly convex and coercive (proof in Appendix) so that we recover a
unique solution bu. Recalling that be

hi is a function of (H, O, a, t), we obtain that for any such tuple there is a unique vector bu

that adjusts the bids to ensure that all agents are located. We denote W3:IR3|C||I| � IR|A| ? K the map that gives the location
pattern ~H ¼ W3ðH;O;a; tÞ derived from (14) for this particular bu.

Lemma 2. Under (P1) and (P2) the map W3 is well defined and of class C1.

Proof. Once again this follows directly from the Implicit Function Theorem. h
3.3.4. Fixed-point formulation of the integrated LU&T equilibrium
We proceed to formulate an integrated LU&T equilibrium model by connecting the three previous components. Starting

from a given H e K we define the trip generation matrix O = W1(H) by direct evaluation. The pair (H, O) then produces a vector
of accessibility variables (a, t) through the map W2 (as well as the expected times to destination sdh

i and the arc flows vdh
a and

wa). Finally, the tuple (H, O, a, t) determines a unique b and a corresponding location matrix ~H through the map W3. Alto-
gether, this composition gives ~H as a function of the initial location pattern H, namely, with H:K ? K given by
H(H) = W3(H, W1(H), W2(H, W1(H))). An integrated LU&T equilibrium is then defined as a fixed point of the latter map, that
is to say, a solution of the equation
H ¼ HðHÞ: ð17Þ
Once a solution H is found, the remaining variables such as trip generation, distribution, network flows, and travel times,
are readily computed by solving the optimization problems (11) and (17). Explicitly, the integrated LT&U equilibrium is de-
fined by the equations:
Ohi ¼ NhiHhi þ dhi 8i 2 I;h 2 C ð18Þ

ta ¼ saðwaÞ 8a 2 A ð19Þ

wa ¼
X

d2D;h2C

vdh
a 8a 2 A ð20Þ

vdh
a ¼

X
i2I

gdh
i
@sdh

i

@ta
8a 2 A;d 2 D; h 2 C ð21Þ

gdh
i ¼ expð�lhðsdh

i ðtÞ � cdðHÞ � ahiÞÞ 8i 2 I;d 2 D;h 2 C ð22ÞX
d2D

gdh
i ¼ Ohi 8i 2 I; h 2 C ð23Þ

bhi ¼ be
hiðH;O;a; tÞ � bu

h 8i 2 I;h 2 C ð24Þ

Hhi ¼ Si
exp½hibhi�P

g2C exp½hibgi�
8i 2 I;h 2 C ð25Þ

X
i2I

Hhi ¼ Hh 8h 2 C ð26Þ
where the time-to-destination functions sdh
i ðtÞ are defined implicitly by the system
sdh
i ¼ udh

i ðta þ sdh
ja

: a 2 Aþi Þ 8i 2 I;d 2 D;h 2 C ð27Þ
and the maps sa(�), cd(�), be
hið�Þ; and udh

i ð�Þ are given functions that model, respectively, the flow dependent arc travel times,
the attraction externalities at destinations, the willingness-to-pay functions for zones, and the discrete choice models for the
traffic assignment.

Since K is a non-empty compact convex polytope and since the map H(�) is continuous (as composition of continuous
maps), Brower’s Fixed-Point Theorem readily gives

Theorem 1. Assuming (P0) � (P2) there is at least one integrated LU&T equilibrium.

Furthermore, the map is of class C1 and since K is compact it turns out to be Lipschitz. We claim that when the hi’s are
sufficiently small it is in fact a contraction.

Lemma 3. There exists hc > 0 such the map H ´ H(H) is a contraction from K to itself as long as hi e (0, hc) for all i e I.
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Proof. Consider the maps jhiðHÞ ¼ be
hiðH;O;a; tÞ � bu

h with O;a; t and be expressed as functions of H using the maps W1 and
W2. Thus jhi(H) is of class C1 and using (14) we may express HhiðHÞ ¼ SiphiðHÞ with
phiðHÞ ¼
exp½hijhiðHÞ�P

g2C exp½hijgiðHÞ�
so we may compute the derivatives of the map H(�) as
@Hhi

@H‘j
¼ hiSiphi

@jhi

@H‘j
�
X
g2C

pgi
@jgi

@H‘j

" #
then,
@Hhi

@H‘j
¼ hiSiphið1� phiÞ

@jhi

@H‘j
�
X
g2C
g–h

pgi

1� phi

@jgi

@H‘j

2
664

3
775
By taking an uniform bound for the derivatives @jgi

@H‘j

��� ��� 6 M; and using that
P

g2C
g–h

pgi

1�phi
¼ 1, then since

P
heCphi = 1 and

maxx2½0;1�xð1� xÞ ¼ 1
4, we conclude that:
@Hhi

@H‘j

����
���� 6 2MhiSiphið1� phiÞ 6

1
2

MhiSi
It follows that H(�) is a contraction provided the hi’s are small enough. h

The interpretation of this result is straightforward: since the hi’s are inversely proportional to the variance of the Gumbel
distributions of bids, the condition in Lemma 3 imposes a minimum dispersion of bids across consumers. On the contrary, if
the agents behave increasingly deterministic, the equilibrium may be non-unique. In principle, once the modeling functions
sa(�), cd(�), be

hið�Þ, and udh
i ð�Þ are given, one may compute an estimate for M in order to get an explicit value for hc.

Notice that the Logit-type models used above assume finite and positive dispersion, which means that extreme cases, like
the deterministic as well as the completely random cases are not included in the formulation.

Theorem 2. Assuming (P0) � (P2) and hi � (0, hc) for all i � I, there is a unique integrated LU&T equilibrium which can be
computed by the convergent fixed-point iteration Hk+1 = H(Hk).

Proof. This follows directly from Banach Fixed-Point Theorem. h

Observation: This proof permits to have a complete vision of the stages involved in the implementation of the solution
algorithm. Under all the previous assumptions, the algorithm works as follows. Given Hk, we compute Ok by means of Eq.
(10). Then, the pair (ak, tk) is calculated by using a similar scheme as that proposed in Baillon and Cominetti (2008). After
that, we construct the vector ðbe

hiÞ
k to compute through the unique solution of problem (16) the associated vector Hk. Finally,

Hk+1 is computed by means of Eq. (25).

4. Simulations

The fixed-point iteration was tested on the network of Sioux Falls city shown in Fig. 2, which comprises 24 nodes and 76
arcs (LeBlanc et al., 1975). Although the real city exists, we considered fictitious data for population, trip rates, and real estate
supply.

The procedure was implemented in MATLAB, using BPR arc travel time functions of the form saðwaÞ ¼ t0
a ½1þ baðwa=caÞpa �.

For the discrete choice in the MTE assignment we considered Logit models with scale parameter b independent of the node,
agent type, and destination, so that the expected time-to-destinations were obtained by solving
sdh
i ¼ �

1
b

ln
X
a2Aþi

exp½�bðta þ sdh
ja
Þ�

0
@

1
A

Besides, we chose the following functional form for the willingness-to-pay functions
be
hiðH;O;a; tÞ ¼ zhi þ mh ln Ohi þ qhahi þXhðH�iÞ
The parameter zhi describes an exogenous value for the zone’s features, while the term mh ln Ohi + qhahi is the consumer’s
valuation of accessibility represented by the traveler’s surplus obtained from the transport system. This surplus is obtained
from the consumer’s travel demand curve, balancing the benefits of activities and the trip costs reflected in the Lagrange
multipliers ahi of the singly constrained entropy model for trip distribution. The term Xh(H�i), taken as a linear function,



Fig. 2. Sioux Falls network and neighborhoods.
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incorporates the location externalities by representing the like or dislike of agents of type h for other agents located at zone i.
Finally, for simplicity, in these tests the functions cd(H) were considered constants and the scale parameters of Eq. (25) are
assumed hi ¼ h 8i.

We considered five agent types divided in two groups: poor population (types 1–3) and rich population (types 4 and 5).
Only one trip purpose was considered, with high attraction factors on five special nodes called neighborhood A or job’s center,
so that most trips are attracted towards this area. The constants zhi were set to simulate a preference of the poor population
for neighborhood A, while the rich population prefers the affluent neighborhood B represented by four neighboring nodes
(see Fig. 2). Thus, if we ignore the congestion effects and location externalities, neighborhood A represents a poor residential
area and an employment district, while neighborhood B is a rich residential area.

Simulations were run for seven scenarios indexed by m = 1, . . . , 7; varying the number of agents and real estate supply
according to Hm

h ¼ 2mH0
h and Sm

i ¼ 2mS0
i , but keeping fixed attraction factors. The distribution of households H0

h and real estate
supply S0

i was taken homogeneous among agent types and location zones, respectively. Fig. 3 illustrates the equilibria ob-
tained with and without location externalities: X(H) – 0 and X(H) = 0. In both situations, as the population grows the rich
outbid the poor in neighborhood A which becomes more demanded as a consequence of increased network congestion. The
outbid is less intense in the case with externalities, showing that segregation induces a higher preference of rich families for
neighborhood B. Despite the higher complexity of the model with externalities, the running times in both cases are similar.
Fig. 3. Simulated resident’s share between poor and rich populations with and without location externalities.
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5. Conclusions and further research

We described a model to integrate the land-use and the transportation systems, including externalities in both sub-sys-
tems. The model extends the work of Briceño et al. (2008) where an integrated model was studied using an extended net-
work representation of the joint land-use and transport equilibrium, which considered road congestion but ignored the
externalities in the location process and trip attractions. The extended model was formulated as a fixed-point problem ob-
tained by composition of smooth maps that describe trip generation, distribution/assignment, and bid/location. This fixed-
point model was used to prove existence of equilibria, and to identify a mild condition on the dispersion of consumers’ bids
that guarantees uniqueness as well as convergence of a fixed-point iteration. This condition highlights the relevance of sto-
chastic behavior, since as the behavior becomes closer to deterministic (low dispersion) the equilibria may no longer be un-
ique. A strong assumption in the model is that bids are taken quasi-linear on utility levels.

The different stages of the transport and land-use models are treated by known modeling approaches, which provide
interesting flexibilities in representing reality that are preserved in the integrated model. In that sense, we can highlight
the following aspects: the wide scope of possible bid functions to be incorporated, the theoretical flexibility of the trip gen-
eration model (as detailed in Section 3.3.1), the different types of households considered, the general way to model the exter-
nalities in the location market, the space dimension considering an arc-based framework in the transport assignment that
allows working with larger networks, among others. Besides, the integrated model represents an auction market and allows
proving the convergence of the algorithm to the global equilibrium of the integrated system considering externalities in both
location and traffic congestion, unlike the previous reported models that assume a Walrasian-type equilibrium and a heu-
ristics to deal with similar integrated problems ST&US (bi-level) where the convergence to such an equilibrium is not
ensured.

The proposed model considers only private transport modes in the transport system. Public transport can be partially in-
cluded by using a shortest path approach in the spirit of De Cea and Fernández (1993). Also, public transport modes such as
light rail or metro, as well as non-motorized transport modes, may be included in the model as suggested in Baillon and
Cominetti (2008) by considering additional network layers in parallel to the private transport network with transfer arcs
to model the interaction among different modes. However, a formal treatment of the congestion externalities in the transit
system, including a fully congested strategy-based model such as the one described in Cominetti and Correa (2001) and
Cepeda et al. (2006), remains open for further research.

The extended network framework may also be seen as a platform for modeling other dimensions of the urban system.
Further developments may include the communications and the goods markets as additional layers in the extended network.
Finally, the extended network approach can be used to study dynamic processes on the extended network, including equi-
librium stages along time on each submarket in line with Martínez and Hurtubia (2006), by considering delays in slow mov-
ing variables such as infrastructure development, and the introduction of lack of information on key variables for decision
makers such as expected future prices.
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Appendix A

Proof of Lemma 1. First, we must prove that Problem (11) has a unique solution. For that purpose, we will prove that the
function U(a, t) is coercive and strictly convex.

CONVEXITY. To prove strict convexity, we show that each component is strictly convex. In fact, the strict convexity of

function wðtÞ ¼
P

a

R ta

0 s�1
a ðzÞdz comes from the fact that s�1

a ðzÞ is assumed to be a strictly increasing function. In addition, the

function fðt;aÞ ¼
P

i2I
P

h2COhiahi þ
P

h2C
1
lh

P
i2I
d2D

expð�lhðcdh
i ðtÞ þ ahiÞÞ is strictly convex with respect to a while the functions

cdh
i ðtÞ are concave with respect to t (see Baillon and Cominetti, 2008), from where f(t, a) turns out to be strictly convex.

COERCIVITY. In this case, we have to prove that the recession function U1 of U is positive for all non-null direction,
i.e.
U1ðt;aÞ ¼ lim
k!þ1

Uðkt; kaÞ
k

> 0 8ðt;aÞ – 0 ðAÞ
First of all, let us analyze the case where t – 0. Hence,
w1ðtÞ ¼ lim
k!þ1

1
k

Z kta

0
s�1

a ðzÞdz ¼ þ1
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since lim
wa!þ1

s�1
a ðwaÞ ¼ þ1. Thus, it follows that in this case we have U1(t, a) =1. Let us consider next the case where t = 0.

By using calculus along with some properties of the recession function and composition, we have
U1ð0;aÞ ¼
X
i2I

X
h2C

Ohiahi þ lim
k!þ1

X
h2C

1
klh

X
i2I

d2D

expð�klhððshd
i Þ
1ð0Þ þ ahiÞÞ
According to Baillon and Cominetti (2008), we have that ðshd
i Þ
1ðtÞ ¼ shd

i ðtÞ, where shd
i ðtÞ is the minimum deterministic tra-

vel time between i and d when the cost of arc a is ta. Therefore ðshd
i Þ
1ð0Þ ¼ 0 and then
U1ð0;aÞ ¼
X
i2I

X
h2C

Ohiahi þ lim
k!þ1

X
h2C

1
klh

X
i2I
d2D

e�klhahi

¼
X
i2I

X
h2C

Ohiahi þ jDj lim
k!þ1

1
klh

e�klhahi

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

uhi

¼
X
ði;hÞ2U0

uhi þ
X
ði;hÞ2Uþ

uhi þ
X
ði;hÞ2U�

uhi
where U0 = {(i, h); ahi = 0}, U+ = {(i, h); ahi > 0} and U� = {(i, h); ahi < 0}.
We can see that, if ahi e U0 then uhi = 0; if ahi e U+ then uhi = Ohiahi > 0 and if ahi e U- then uhi = +1. Hence, we have

U1(0, a) > 0 for all a – 0 which completes the proof of coercivity. h

Remark. Similar to the procedure used by Baillon and Cominetti (2008), we can prove that the functions shd
i ðtÞ are of class

C2, by applying the implicit function theorem and taking into consideration that the shd
i ðtÞ functions are the solution of a

fixed point-type equation. Then, we have that U is of class C2. By using again the implicit function theorem, we prove that
W2 is of class C1 which is the claim of Lemma 1 and the proof is complete.

Proof of strict convexity and coercivity of Problem 16. The reduced problem, after the normalization bu
1 ¼ 0, is
min
bu2RjCj�1

CðbuÞ ¼
X
h2C

Hhbu
h þ

X
i2I

Si

hi
ln

X
h2C

exp½hiðbe
hi � bu

hÞ�
 !
CONVEXITY. To show that C(b) is strictly convex, it is enough to prove that the function fiðyÞ

¼ 1
hi

ln
P

h2C expðhiyhÞ
� 	

¼ 1
hi

ln
P

h2C
h–1

expðhiyhÞ þ 1
� �

is strictly convex. Let us define zh = exp (hiyh) with z 2 RjCj�1. The Hessian

associated with f is
Hf ¼ 1
1tzþ 1

diagðzÞ � 1
1tzþ 1

diagðztzÞ
where 1t is the row vector of ones with dimension |C| � 1, and diag(z) is the diagonal matrix with elements zh. Now, let
0 – v 2 RjCj�1. Then, we have
v tHf v ¼
P

h
zhv2

hð Þ
P

h
zhþ1ð Þ�

P
h

zhvhð Þ2P
h

zhþ1ð Þ2
>

P
h

zhv2
hð Þ
P

h
zhð Þ�

P
h

zhvhð Þ2P
h

zhþ1ð Þ2
P 0
where the last inequality is the Cauchy–Schwartz inequality used with vectors vh
ffiffiffiffiffi
zh
pð Þh and

ffiffiffiffiffi
zh
pð Þh.

COERCIVITY. To prove that the function CðbuÞ is coercive, we write its associated recession function. Noting that the
recession function of 1

hi
ln
P

h2C exp½hiðbe
hi � bu

hÞ�
� 	

and giðb
uÞ ¼ 1

hi
ln
P

h2C exp½�hib
u
h�

� 	
is the same (since the term be

hi is
constant in this problem), we have
g1i ðb
uÞ ¼ lim

k!1

1
khi

ln
X
h2C

exp½�khib
u
h�

 !
¼min

h
bu

h ¼ bu
with bu
6 0, since bu

1 ¼ 0. Then,
C1ðbuÞ ¼
X

h

Hhbu
h � bu

X
i

Si P 0
where C1(bu) = 0 if and only if bu ¼ bu
h ¼ 0 for all h. h

For further details of these proofs and other associated developments, see Bravo (2007).
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