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Abstract 
In this work, we propose the inclusion of the available information of measured or estimated 
disturbances in the modifier adaptation methodology for real-time optimization (RTO). The idea is 
to extend the applicability of this technique for processes wherein disturbances affect the quantities 
involved in the necessary optimality conditions of the process. To do so, we include the estimation 
of process gradients with respect to both decision variables and disturbances in the methodology. 
The implementation of this approach was performed in a laboratory-scale flotation column, where 
the effects of changes in the feed characteristics on the economic performance were included. 
Additionally, the impact of the availability of disturbances information was analyzed, considering 
immediate and delayed availability. In the latter case, the Auto Regressive Integrated Moving 
Average model (ARIMA) was used as an estimator in each RTO iteration. The results show that the 
inclusion of the available information of disturbances allows tracking the optimum of the process 
under continuously changing feed conditions. 
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1. Introduction 
In the process industry, a large number of variables can be manipulated to improve production and 
achieve financial aims. Consequently, finding an optimal point is not a trivial task, due to the 
uncertainties and disturbances that continuously modify the operating conditions. To remain 
competitive, the enterprises must face a growing need for being more economically efficient, safer 
and more sustainable. With regard to process supervision, attaining improvements in efficiency 
requires achieving optimal operational points. 

However, there is an inherent difficulty in getting plants to reach optimal operating points, since 
models only partially represent the process phenomenology. Furthermore, a large number of 
variables associated with other stages of the process could modify the economic performance. From 
the mathematical point of view, this makes the task of finding optimal points more complex, 
because there is modeling mismatch to consider along with the disturbances that constantly modify 
the conditions of the operation. 

Real-time optimization (RTO) can be a tool to achieve industry goals. In the plant decision 
hierarchy, RTO is located as a layer of operation at a higher level than control systems and lower 
than layers such as planning and scheduling. Upper layers give instructions to lower layers, and the 
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former send information as feedback to the latter. Therefore, applying RTO makes it possible to 
have economic decisions be implemented in the plant in real time.  

RTO emerged in the 1970s as a two-stage algorithm that contemplated parametric estimation and 
economic optimization. This methodology, proposed by Bamberger & Isermann (1978), consists of 
an initial stage of parametric estimation of a nonlinear model and then the optimization of a 
performance index with the updated model. Although this method can arbitrarily handle complex 
systems with many degrees of freedom, it was demonstrated that the parametric estimation is not 
adequate under a scenario of structural uncertainty. 

Therefore, on account of the fact that the two-stage approach has difficulty converging to the 
optimum of the process, a modified two-stage approach was developed by Roberts (1979), and it 
was called Integrated System Optimization and Parameter Estimation (ISOPE). This methodology 
requires calculating plant gradients of output variables from the process (i.e., ) with respect to the 
inputs ( ), in order to introduce a term that modifies the objective function of the economic 
optimization, adding a first order corrector. Subsequently, the parameter estimation step was 
eliminated, and correction terms were added to the optimization problem. These terms take into 
account the differences between the real process and model output derivatives with respect to 
decision variables (Tatjewski, 2002).  

More than two decades later, adding a correction term in the inequality constraints of the 
optimization problem was proposed by Gao & Engell (2005), due to supposition that the constraints 
are affected by model uncertainty. Later, the Modifier Adaptation methodology (MA) was defined, 
first by Chachuat et al. (2009) and afterward by Marchetti et al. (2009). The main characteristic of 
this methodology is KKT matching between the plant and model problem and the modified 
optimization problem, which can find the optimal operation of an uncertain process (Marchetti et 
al., 2016). 

In the last few years, the research has made considerable advancements by using the methodology 
(MA) as a basis for the following studies. The more recent investigations have been focused on 
improving this technique, whether by searching for a more reliable and robust gradient estimation 
(Bunin et al., 2012; Marchetti et al., 2010) or by avoiding the gradient estimation step (Gao et al., 
2016; Navia et al., 2015). 

Regarding MA applications, it has been performed with few input variables and with known noise 
characteristics. That occurs for two reasons: (i) fewer points are required for gradient estimation, 
and (ii) there is less difficulty in handling since these are less sophisticated systems. Additionally, in 
MA applications, it is assumed that the sampling time of the disturbances is longer than the settling 
time (Darby et al., 2011). 

The first aspect, mentioned above, has been addressed by Costello et al. (2016) with their 
Directional Modifier Adaptation method (D-MA) that can handle a large number of input variables 
(  ). The disturbances issue is approached in this work, assuming that the disturbances are input 
variables coming from another stage, with a sampling time shorter than the settling time of the 
system. 



The limitation presented by the methodology (MA) with respect to the effect of the disturbances 
motivates the study of methods to take into account all input variables in the estimation of process 
gradients, and even Wenzel et al. (2015) tried a variant of the methodology that considers 
disturbances. In this paper, a method is presented that uses the past measurements and contemplates 
both types of input variables, namely decision variables ( ) and disturbances ( ), in order to obtain 
an accurate estimation of the gradient of the process with respect to  . With this in mind, the aim is 
to have an optimization layer capable of reaching and maintaining the optimal conditions of the 
plant, in spite of changes in measured or estimated disturbances. 

The remainder of this paper is organized as follows. Section 2 describes the MA methodology. 
Section 3 shows the extended technique that includes disturbances. Section 4 presents the 
application of the proposed methodology in an experimental flotation column. Section 5 exhibits the 
simulation and experimental results. Finally, Section 6 provides the conclusions of the paper. 

2. Modifier Adaptation for Real-Time-Optimization 
Due to the growing competitiveness of the process industry, it is increasingly necessary to improve 
the efficiency of the processes. A useful tool for that is RTO, which consists of model-based 
optimization that operates iteratively by taking measurements directly from the process, proposing 
changes in the set-points of the lower supervisory layers and bringing the plant to the economic 
optimum. Eq. (1) describes a model-based optimization, where      is the objective function, 
and        are the inequality constraints, calculated using an available model.  

                 
       
            

(1) 

The uncertainty inherent in each model prevents the optimum determined in a model-based 
optimization from converging to the actual optimum of the process. Therefore, the real-time 
implementation should consider past measurements made to the process and its effect on the cost 
function and constraints. 

One of the most current technologies in real-time process optimization is the RTO with Modifier 
Adaptation (MA) because it can manipulate modeling errors, correcting the model-based 
optimization using experimental gradients of the objective function and constraints. Eq. (2) explains 
the optimization problem in the kth iteration, which includes the modifier of the objective 
function       , and the modifiers           and        of the constraints. 
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In the problem shown in Eq. (2),         represents the actual operating point, which is 
calculated at the previous RTO iteration. The modifiers   ,    and    are estimated from the 
process in the actual operating point using Eq. (3), where      is the objective function and 
       are the inequality constraints; the subscript   corresponds to the process. To improve 
convergence, Marchetti and co-workers recommend the use of a filtering procedure of the modifiers 
(Marchetti et al., 2009). Eq. (4) shows these filters, where        and    represent the respective 
first-order filter constants for each modifier. Figure 1 summarizes the implementation of the MA 
methodology.  
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Figure 1. Implementation algorithm of the modifier-adaptation methodology. 

Furthermore, according to Marchetti and co-workers, the Karush-Kuhn-Tucker (KKT) conditions of 
the modified model match the conditions of the real process (Marchetti et al., 2010). This implies 
that if second-order conditions hold at this point, and then, it is possible to find the local optimum of 
the real plant through solving the modified problem. Eq. (5) describes the Necessary Optimality 
Conditions (NOC) of the modified problem.  
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Under the assumption of convergence,      , and taking into account the definitions of the 
modifiers, the optimality conditions are restated as Eq. (6), which represents the NOC of the real 
process. 
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2.1. Gradient estimation 

In the real-time optimization problems with modifier adaptation, different methodologies have been 
proposed for changing the gradient estimation step, which influences the computation of modifiers. 

2.1.1. Finite Differences 

This method consists of perturbing the system around the current point of operation, changing just 
one decision variable and recording the outputs of the process (Roberts, 1979). When all 
perturbations are ready, the next stage of the RTO layer can be advanced (see Figure 1). Navia et al. 
(2016) implemented the experimental equipment used in this work. It has been shown to be an 
inefficient method for slow dynamic processes (Mansour & Ellis, 2003). 

2.1.2. Dual control optimization 

This approach consists of the use of past measurements for the estimation of gradients. Therefore, it 
should ensure that the collected measures have sufficient energy for that evaluation, adding another 
restriction to the optimization problem (Brdys & Tatjewski, 1994). The name “dual” comes from 
the additional constraint that must be added to the modified problem, to guarantee identifiability of 
process curvatures in the next RTO iteration. In this work, the rank-one update based on an 
approximation of the directional derivatives is used, which was proposed by Brdys & Tatjewski 
(1994). Eq. (7) shows the process gradient estimation, where the matrix    is square and non-
singular, formed by the linearly independent      elements, which are defined as the differences 
between the current decision variables and the previous ones. 
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In Eq. (7),     
 

 
 is the gradient of process variable   

  with respect to decision variables  , 
evaluated at kth RTO iteration. 



Although this methodology presents advantages with respect to the convergence time, it is 
necessary to add the dual constraint for      to the modified problem, to ensure identifiability. Eq. 
(8) shows this restriction, where the inverse of the condition number      of matrix     , must be 
greater than a given limit   . 

           (8) 
This additional constraint reduces the feasible region for the original modified problem, which 
implies a loss of optimality in the RTO iteration that some authors justify regarding the possibility 
to estimate the gradient of the process accurately (Brdys & Tatjewski, 2005; Marchetti et al., 2010). 
As already mentioned, in this work we have used this approach to extend the methodology to cases 
when disturbances can be measured or estimated. 

2.1.3. Nested modified adaptation 

The estimation of the process gradients implies having a continually excited system, which could 
cause operational problems. With this in mind, Navia and co-workers have proposed a 
reformulation of modifier adaptation as a nested optimization problem called the Nested Modified 
Adaptation (NMA) (Navia et al., 2015). NMA follows a similar structure as the original method, 
but it replaces the estimation of the gradient modifiers    and    for an upper optimization layer. 

2.1.4. Quadratic approximation of data collected 

Gao et al. (2016) have proposed a methodology that, unlike other methods, use      
measurements, it uses all measures obtained to perform a regression with a quadratic function of 
data previously chosen. Then, the gradients can be estimated analytically from this adjusted curve. 

2.1.5. Using transient information 

Two methods have arisen to increase the speed of convergence of the RTO layer, especially when 
dealing with slow dynamic processes. 

First, François & Bonvin (2013) presented a gradient estimation method using transient information 
for steady-state optimization, although the gradients are defined only at steady state. 

Later, Rodríguez-Blanco et al. (2017) presented another methodology that proposed the use of 
transient information for the gradient estimations, based on the use of a truncated Taylor expansion 
for the output variables combined with the least squares algorithm (RELS). 

As discussed above, several methods have been developed for improving the convergence of MA. 
However, no technique includes handling explicitly the available information of disturbances that 
can be measured or estimated in processes, which can affect the NOC of the real system. 

This work presents an application of the MA methodology including changes in the quantification 
of the experimental gradients. Considering that, most processes have several input variables, which 
can generate changes in the system, apart from the decision variables. Therefore, if this information 
is not considered, it may lead to a miscalculation of process curvature, which could mean a wrong 
detection of the NOC for a real system.  



 

3. MA with disturbances 
3.1. The effect of disturbances on the Modifier Adaptation Method 

As mentioned above, a real system has several inputs and outputs. Figure 2 shows a diagram that 
exemplifies this situation and allows relating the dependence of the outputs with respect to the 
inputs. 

 

Figure 2. A general process scheme. 

where: 

                        

     : decision variables 

     : disturbances  

In practice, it is difficult to block the effect of an uncontrolled variable on the response. Thus, the 
implementation of an RTO layer using MA should include the impact of   in    if it is available. 

Expressing the measured changes in the output of the system at the kth iteration and using a first-
order Taylor approximation as shown in Eq. (9), the variations in the output do not depend only on 
the changes of decision variables        𝑙 𝑜 on the changes in disturbances  .  

   
 
   

      
     

 
 

      
     

 
 

              (9) 

Where               and               with         . 

Using a gradient estimation method based only on the past information of    and  , leads to an 
expression that only in particular cases corresponds to       .  

Consider, as an example, the directional derivatives approach. If we apply Eq. (9), neglecting higher 
order derivatives to the differences of   

  with respect to the previous    operating points, we obtain 
Eq. (10).  
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Pre-multiplying Eq. (10) by   
   (assuming that it is not singular), we get Eq. (11). 
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The first term on the right-hand side of Eq. (11) is the estimation of the gradient using the 
directional derivative approach from Eq. (7), which is only equal to     

 
 
 under two possible 

scenarios: (1) there are no variations in   during the last    operating points; or (2) disturbances do 
not affect   . In other cases, the information of changes in the disturbances must be considered to 
estimate the process curvature accurately with respect to the decision variables. To visualize the 
effect of this miscalculation, it is assumed that the MA methodology converges, and it is considered 
that neither scenario 1 nor 2 are satisfied. Replacing the estimation of the process gradient using 
directional derivatives into the stationarity condition of the modified problem leads to Eq. (12), 
which is not the KKT point of the process. Therefore, it is possible to say that neglecting the 
information of disturbances in the process gradient calculation can compromise the ability to find 
the NOC of the process. 

                     
                               

                       
                    (12) 

A similar analysis can be done for other gradient estimation methods that only consider past 
information of    and  . Then, it is necessary to take into account processes where the disturbances 
affect the outputs, changing   in every iteration, in order to estimate the process derivatives 
accurately. 

3.2. Proposed Extension of the Dual Methodology  

In this work, we propose the extension of the dual methodology for gradient estimation to take into 
account explicitly the available information of  , assuming that these variables can be measured or 
estimated. As a remark, other alternatives can be investigated, such as increasing the energy of 
matrix    to make the changes in decision variables more important than the changes in the 
disturbances. However, precautions are needed since this can compromise the gradient estimation 
due to the distance between the previous values of   from the actual one.  

The proposed method has a similar implementation structure as the one shown in Figure 1, but the 
stage of gradient estimation corresponds to the use of the extended dual methodology, since it also 
considers the measured or estimated changes in the disturbances. Applying the Taylor expansion of 
Eq. (9) is necessary in order to calculate the experimental gradients, using the differences of the 
actual measurements with respect to the         previous operating points, as Eq. (13) shows.  
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where          ,                   ,                , and   
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Under the assumption that     is nonsingular, the gradient of process variable   
  with respect to 

input variables can be obtained from Eq. (14). 
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To ensure identifiability, an additional constraint must be added to the modified optimization 
problem, as Eq. (15) shows.  

   
   

          
        

       
          

             
                           

(15) 

where        and        are the component vectors of            , which is the vector 
orthonormal to the subspace                       , and   is greater than zero. 

As the value of      is unknown when the RTO is solved, this must be estimated from available 
models using previously determined values. Once the system reaches the steady state, the dual 
constraint must be reevaluated with the measured or estimated value of   . Since matrix     has an 
independent part, it is necessary to evaluate the cases of   when identifiability problems may arise. 
Section 3.3 presents a theorem to give sufficient conditions for linear independency of matrix      . 

Figure 3 summarizes the implementation algorithm for the proposed methodology which is detailed 
below: 

Algorithm 

Step 0: Set     and initialize   ,   ,    and   . Calculate and apply    into the process. 
This value can be obtained by solving the model-based optimization, or by using 
other operational criteria. Wait until steady state to estimate     ,      and    from 
the available data. Set       and repeat the application for another value for    
in the process up to      , such that the matrix     is invertible. To do so, the 
changes in    can be chosen to be orthogonal among them, or it can be added a 
random component in the changes for avoiding linear dependency.  

For every      : 

Step 1: Measure or estimate    and calculate     . Check whether or not the dual constraint  
                                  is fulfilled; if this is the case, then 
go to Step 2. Otherwise, if there are components of vector    that have not changed 
between   and     (i.e.,   

      
      , where   is the set of the    unchanged 

perturbations), then remove these elements from the matrix     and go to Step 2. If 
this is not the case, linear dependencies of elements of   are produced, so it is 



necessary to wait for changes in   that satisfies dual constraint. Notice that      
                             is the dual constraint from Eq. (15), applied 
to the actual operating point. The fulfillment of this condition must be evaluated 
because when Eq. (15) was solved,      had been estimated using past values of 
disturbances.  

Step 2: Estimate the gradients of the model and the process according to Eq. (14), extracting 
    and    , and calculate the modifiers according to Eq. (4) in Section 2.1. 

Step 3: Solve the modified optimization problem to obtain     , according to Eq. (15). 
Compare the dependence of the convergence criterion, and if it is satisfied, then it 
stops. Otherwise, set      , apply     to the process, wait until steady state, and 
go to Step 1. 

 

 

Figure 3. Implementation of the proposed extension of the modifier-adaptation method. 
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Let   ,    and         , natural numbers corresponding to the dimensions of vectors  ,   and 
 , respectively, and     the iteration number of the method. For every     and vectors 
              and              , we define 

                                   
     
     

                  

Then, the problem to solve is the following: 

Problem 1: Suppose that               are linearly independent. Given            , it is 
necessary to find              (if it exists) such that the vectors 

                          

are linearly independent. 

To solve the problem, first we have to relate the new vectors to the old ones that we already know 
are linearly independent. To do so, note that 

                                      (16) 

Proposition:                         are linearly independent if and only if                           
are linearly independent. 

Proof. Let           such that           
 
     . We want to demonstrate, using the 

hypothesis, that          . Using Eq. (16), we obtain  

                      

 

   

               

 

   

                   

 

   

     

 

   

                   

   

   

 

As by hypothesis                         are linearly independent, we have    
 
      and    

      , where the result is concluded. For the reciprocal, let           such that 
        

   
               . Using again Eq. (16), we obtain  

                        

 

   

                       

 

   

       

 

   

        

        

   

   

                     

 

   

 

as                           are linearly independent, we have       
   
      and      

      . 



The previous proposition tell us that the Problem 1 is equivalent to  

Problem 2: Suppose that               are linearly independent. Given            , it is 
necessary to find             (if it exists) such that  

                        

are linearly independent. 

The advantage of this new formulation of the problem is that                 only have information 
from the iteration   backwards, so they do not depend on      . 

Theorem 1. Given    , let           the vector normal to subspace    generated by 

               , i.e.,                       . Let us denote       
  

 , where        and 

      . Then, if     , for every            , there exists             such that         
is linearly independent with respect to   , i.e.,                         are linearly independent. It 

can be found by ensuring                                .  

Proof. Indeed, since                 are linearly independent,    is an    -dimensional subspace 

of    and there exists       
  

         which is normal to     Therefore, 

                       is a basis of   . 

Note that, for every       we have      if and only if          Indeed, since   is a basis of 
  , exist              , such that            

   
        and then               

   
   
    

               which is equal to 0 if and only if     or, equivalently,        

Therefore, given            , for obtaining that         is linearly independent to    it is enough 
to find             such that          

           
            

   , which is always 
possible to find if       

Theorem 1 gives conditions for the existence of a solution to Problem 2. The next result 
characterizes those conditions. 

Proposition 2. Under the previous notation, we have      if and only if 
                             

Proof. Indeed, if      then the orthogonality condition      
     , for every           

reads      
                , where     . Equivalently,        , where 

   
     

 

 
       

 
            



which yields             . Therefore, since                , then 
                             Conversely, if                             then 
             and there exists      such that      

                 and, hence, the 

vector      
  

         is orthogonal to                , which yields        for some 

   . We deduce that       

Remark. From Theorem 1 and Proposition 1, we deduce that if                           
then      and, for every             , we can choose             for obtaining a vector 
linearly independent          with respect to                . Otherwise, if 
                          and         is not generated by previous data, we assume that, for 
every            ,          is linearly independent with respect to                      . Indeed, let 
          be constants in   such that                  

   
       Then, we have          

          
   
      and                    

   
     , and since       is not generated by 

previous data, we deduce that      Hence,         
   
      and it follows from the linear 

independence of                 that               

Therefore, the difficult case is when                           and         is a linear 

combination of                . If         is a random vector, this event has null probability. 
Nevertheless, if this improbable case happens, then it is necessary to wait for new values of  . In 
practice, components of                         may remain unaltered. Under this scenario, we 
can reduce the dimensions of the uncontrolled variable, in order to estimate a reduced gradient in 
the space of the disturbances. 

4. Application to flotation column  
The proposed methodology has been applied to an experimental setup that emulates a flotation 
column for copper concentration since it represents a relevant field of application for the Chilean 
production sector. Additionally, it fulfills the requirements of estimating the most important 
disturbances on a regular basis. 

4.1 Description of the system 

Copper is found in nature as oxides or sulfides. Copper sulfides represent the species with more 
abundance in Chile. For extracting the copper from primary sulfides (such as chalcopyrite), the ore 
extracted from the mine must be comminuted from 20 inches to 75 microns. After this stage, a 
liquid-solid mixture is concentrated from 0.5% to approximately 30% in weight using flotation. The 
industrial flotation process has three main interconnected zones: rougher, scavenger and cleaner, 
plus a regrinding stage. Figure 4 shows a typical flotation circuit. Each zone has specific equipment 
to fulfill their principal purposes. In particular, we are interested in the cleaning zone of the flotation 
circuit, where columns are used because of their capability to increase the concentration of the 
product, because of the use of washing water, among other factors. 



 
Figure 4. Flotation circuit scheme. 

Figure 5 shows a diagram of a flotation column. It consists of a system with three inflows: feed 
pulp, air and wash water; and two outflows: concentrate and tail. Feed pulp with the valuable 
mineral comes from rougher cells and enters in the middle section of the column. Airflow is 
injected into the bottom to generate bubbles to collect the precious metal. Wash water is introduced 
at the top of the column by countercurrent with respect to air, with the aim to decrease the gangue 
of the concentrate. Concerning the outflows, the concentrate rich in the valuable mineral is collected 
at the top of the column; on the other hand, the tail flow leaves the column from the bottom and is 
sent to the scavenger concentration units to recover part of the remaining floatable minerals.  

  
Figure 5. Flotation column diagram. 

The column consists of two distinct zones: the collection zone and the cleaning zone. In the former, 
particles from the feed pulp are countercurrent with a rising group of bubbles produced at the 
bottom of the column, through a sparger. Here is where hydrophobic particles, i.e., floatable 
particles, collide with air bubbles and are transported to the top of the column, which is the cleaning 
zone. In the cleaning zone, the froth is formed because of the addition of chemical reagents and 
wash water cleans the froth from gangue particles.  
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The properties of the feed pulp change because of the operation of side units and the quality of the 
raw materials. In particular, variables that affect the mass transfer are continuously monitored or 
estimated, such as the concentration of copper (grade of feed), solid percentage and particle size. 
Therefore, data of disturbances are available to be included in a supervisory layer based on real-
time optimization. Moreover, the flotation column presents two manipulated variables to modify the 
metallurgical objectives of the process: froth depth and air hold-up. 

The metallurgical objectives of the process are known as recovery and grade. Eq. (17) shows the 
expression to calculate the Recovery     as the percentage of copper of the feed that is recovered at 
the concentrate, while the grade of copper corresponds to its concentration. A trade-off exists 
between both objectives, since a higher grade of copper implies a lesser recovery because of the 
mechanical drag produced by the water in the cleaning zone. 

       
  

     
            

    (17) 

where    and    are the flows, and   
   and   

   are the copper concentrations in the concentrate 
and in the feed, respectively.   

4.1.1 Input Variables 

Controlled Variables 

The variables usually controlled are bias, air hold-up and froth depth. In the laboratory-scale 
flotation column, bounds were implemented on exponential changes in the control loop for avoiding 
problems in the control performance. The maximum step changes for froth depth and hold-up 
control loops were between 25% and 40% of the span, respectively (see Table 1).  

Table 1. Operational ranges for controlled variables. 

 

 

 

 

x Gas hold-up     : it is defined as the fraction of air inside the column. Air hold-up is an 
important variable because it can affect considerably the particle residence time and mineral 
collection, and it depends on air rate, bubble diameter, pulp density and concentration of 
chemical reagents, among other variables (Yianatos et al., 1986).   

For an air-water system with constant density, this variable can be estimated as shown in 
Eq. (18). 

       
  

  (18) 

Variable Lower bound Upper bound Unit 

   40 120 cm 

   8.0 15.0 % 

  0.0 0.80 L/min 



where    is the pressure difference in the collection zone in        .    is the distance 
between the pressure sensors in [cm]. 

x Froth depth     : it corresponds to the height of the froth measured from the froth-pulp 
interface to the top of the froth, and it was measured in [cm].  
 

x Bias ( ): it is defined as the net downward flow of water crossing the froth-pulp interface, 
it is calculated in stationary state as the difference between tail    and feed    flows (Eq. 
19). Nevertheless, it was not considered in the supervision layer because controlling it in 
the flotation column has been problematic. It was measured in [L/min]. 

         (19) 

Disturbances 

As mentioned above, there is a flow of pulp entering the flotation column and coming from the re-
grinding unit. The characteristics of this feed pulp are given by previous processes; therefore, for 
this work they were considered as disturbances. The variables considered correspond to the 
concentration of copper (  ), the percentage of solids (  ) and the particle size (   ). 

As shown by actual plant data, these variables change as a function of time due to the different 
characteristics of the mineral entering the concentrator. Depending on these features, the rougher 
stage configures its operational points, because it is the first one. Consequently, all downstream 
units are operated according to those mineral conditions. Additionally, it is known that the 
conditions and characteristics of ore entering the concentrator change, because the material 
contained in the piles after grinding is used, and in these, the material has no uniform 
characteristics. 

4.1.2 Output variables 

The output variables correspond to the variables measured in the operation of the floatation column. 
These can be obtained with instrumentation as shown in Figure 6 and correspond to flow 
measurements, pulp-foam interface position and concentration. 

The primary objectives, as indicators of process productivity and product quality, are recovery and 
concentrate law. Since the direct estimation of these variables requires intensive maintenance and 
calibration of the on-line analyzers, secondary objectives are controlled in the flotation column, 
such as froth depth, gas flow rate and wash water flow rate (Bergh & Yianatos, 1993). In this paper, 
the secondary objectives mentioned in Section 4.1.1 above are controlled. 

4.1.3 Experimental setup 

The supervisory layer was implemented in the laboratory-scale flotation column shown in Figure 6. 
The body of the column is an acrylic cylinder with an internal diameter of 9.2 cm and height of 3.27 
m, with a system to collect the froth at the top by overflow. The experimental setup is a closed loop 



for both water and frother (chemical reagent), as shown in Figure 3, and E-1 is a recirculation tank 
where these are contained. 

The feed and the wash water are pumped using two peristaltic pumps. The air is injected from the 
compressed air line through a porous diffuser. Both the air and tail flows are manipulated using 
globe valves with pneumatic 3–15 psig actuators. The column has two pressure transmitters in the 
collection zone, a volumetric flowmeter for the tail, and a mass flowmeter for the air. Table 2 
summarizes the instrumentation. 

Table 2. Instrumentation of the flotation column. 

Tag Description Type Brand and model 

PT-1 Pressure transmitter Membrane Delta controls – DAPC-2000/ALW 

PT-2 Pressure transmitter Membrane Delta controls – DAPC-2000/ALW 

FI-1 Tail flowmeter Tangential turbine Omega – FPR-204 PC 

FI-2 Air flowmeter Mass Aalborg – GFM 37 

P-1 Feed pump Peristaltic Masterflex–77411-00/77601-00 Head 

P-2 Wash water pump Peristaltic Masterflex – 7528-10/77800-52 Head 

 

Three control loops were implemented in the flotation column. These are presented in Figure 6, 
where the P&ID diagram is shown. The configuration follows the typical pairing for this type of 
unit:    – tail flow (LIC),    – air flowmeter – air flow (DYC-FIC) and   – wash water flow. 
However, while the RTO layer was operating, the bias control loop was open due to the coupling 
problem between the    and bias control loops. The regulatory layer was implemented with PID 
controllers in a GE Fanuc 90-30 series PLC. 

According to the control loops configured in the flotation column, the manipulated variables are the 
tail, air and wash water flows. These variables affect the flotation process in the column in the 
following ways: 

x Tail flow: its performance allows increasing or decreasing the amount of froth present in 
the column. This relates to the residence time of both zones within the column. An increase 
in this variable causes a decrease in the volume of the collection area, decreasing residence 
time, decreasing recovery and increasing the grade. 

x Airflow: its action allows manipulating the airflow entering the column. Consequently, a 
higher flow increases the concentration of gas contained in the column, then more valuable 
mineral is recovered. Nevertheless, the grade of valuable mineral is diminished, due to the 
increased probability of collisions between air and particles. 

x Wash water: if the bias control is active, this variable can be manipulated to increase the 
entrainment of the gangue particles that are floated, which increases the cleaning and thus 
the grade also rises; however, a decrease occurs in recovery. 



The implementation in the laboratory-scale flotation column was made using a hybrid approach, as 
the presented by Bergh (2007, 2012) and Bergh & Yianatos (2011, 2014). This means that essential 
phenomena can be divided into two aspects: hydrodynamics and physicochemical mechanisms.  

The hydrodynamics of flotation process can be represented using an air-water system, whereas the 
physicochemical mechanism was represented by a metallurgical simulator of flotation copper 
sulfide minerals that uses a first-principles model with two types of degrees of freedom: physical 
and virtual. The physical degrees of freedom are the variables measured from the experimental air-
water setup and the design parameters of the column. The virtual degrees are emulated 
characteristics of feed pulp, i.e., mineralogical composition, physical properties of mineralogical 
species, solid percentage, grade and particle size, together with the kinetic relations that allow us to 
calculate the recovery and grade of the concentrate (Bergh, 2007, 2012). This approach has been 
proven to be a good alternative for the study of supervisory mechanisms in metallurgical processes 
(Bergh & Yianatos, 2011). 

As mentioned by Navia et al. (2016), the dynamic of the experimental setup is controlled by the 
actuator of froth depth control loop, i.e., the tail valve. The tail flow is produced due to pulp level, 
so its dynamics is on the order of minutes. Gas enters at the bottom, and it is discharged to the 
atmosphere at the top of the column, whose dynamic is on the order of seconds. Then, the dominant 
dynamic of the column is related to    and the tail flow, and the interaction between froth depth 
and bias control loops. 
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Figure 6. P&ID of the flotation column. 



4.1.4 Metallurgical model 

A combination of phenomenological and empirical models of the flotation process was used to 
represent a three-phase system with variable input conditions, due to its high complexity. This 
model is based on the analysis proposed by Finch & Dobby (1990). 

In a flotation column, the concentration process can be calculated by considering a different model 
for each zone of the equipment. Thus, exponential functions are used to calculate the recovery in the 
cleaning (  ) and collection (  ) zones (Yianatos et al., 1998; Yianatos et al., 2005). 
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The parameters in Eq. (20) were adjusted considering two mineralogical species  : chalcopyrite and 
gangue, where      and      represent recovery in the cleaning and collection zones, respectively; 
   is the froth depth;    and    are the surface velocities of the gas and the wash water, 
respectively;    corresponds to the residence time of the solid in the collection zone, where    is the 
volume of the collection zone,    is the gas concentration, and    is the volumetric feed flow. 

In Eq. (20),      represents the kinetic floatability constant of species   and is related to the 
probability of collision of the gas with the mineral particles. On the other hand, Eq. (21) shows      
as function as gas surface velocity    and particle diameter   , where the parameters were obtained 
from data collected in the column, setting operating points equivalent to maximum recovery on the 
one side, and maximum concentration on the other.  

The kinetic constant in the collection zone for species   is (Bergh et al., 1998): 

                             
    (21) 

4.2 Implementation of the RTO layer 

The implementation of the RTO layer is shown schematically in Figure 7, where the output of the 
optimization stage corresponds to the set point values of the froth depth control loops (    and the 
hold up (   .  The optimization variables are defined as           . After the application of 
these set points, the system must reach a steady-state, which is verified through a statistical model 
proposed by Rhinehart (1995), and it is based on using the variance of the controlled variables. 



 

Figure 7. Implementation diagram of the RTO layer. 

 4.2.1 ARIMA for modeling disturbances  

In general, there is a limitation to the availability of the data measured by the control systems, since 
these are often delayed and sometimes require pre-processing to be available for other layers of 
operation (e.g., optimization). Particularly in the processing of minerals, it becomes more complex 
to have measurements of some variables of interest, for example, the measures of grade require 
chemical analysis in the laboratory to be able to count on this data, and so at the instant known that 
measurement the mineral has already been processed. 

With this in mind, and as mentioned previously, it is proposed to use an ARIMA (Auto Regressive 
Integrated Moving Average) model to estimate values of variables that are difficult to quantify 
online. The main reason is that a large amount of historical data of operation gives an idea of the 
future changes in the variables that have a high level of autocorrelation. 

According to the methodology presented by Box et al. (2015) in Chapter 4, the models 
corresponding to each disturbance were obtained: feed grade, solids percentage and particle 
diameter are as shown in Eq. (22); these variables are represented by   , and the variable    
corresponds to the stochastic part of the model. 

               
                  (22) 

Where   corresponds to the order of the autoregressive part of the model,   is the order of 
differentiation of the non-seasonal part,   is the order of the moving average,   is the order of the 
seasonal autoregressive part,   is the order of differentiation of the seasonal part,   is the order of 
the seasonal moving average part, s is the period of the time series,   represents the backward shift 
operator, and   is the backward difference operator. 

4.2.2 Objective Function 

The objective function is the inverse of the economic benefit of the flotation column in (USD/h). 
Navia et al. (2016) presented an objective function that does not consider some operational costs of 
side units. Therefore, they are included in this work. The function is shown in Eq. (23): 

      𝑜      𝑜        (23) 

Set points of: 
               

RTO Layer 

      

Flotation 
Column 
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The incomes correspond to the gain obtained from the sale of copper concentrate, whose value 
depends on the grade of concentration and the price per pound of copper according to the London 
Metal Exchange. These are calculated according to Eq. (24), where   represents the flow of 
concentrate of dry mineral, which is calculated by mass balance, and       is the price of the 
concentrate. 

   𝑜             (24) 

On the other hand, the operational costs ( 𝑜       shown in Eq. (25) were divided into energy 
costs, due to reprocessing the recycled material to adjacent units, and losses of valuable mineral 
exiting as tail flow in the scavenger circuit. 

Furthermore, energy costs ( 𝑜      correspond to those required to pump the water and inject air 
into the column, as shown in Eq. (25). Those costs were estimated according to the price of the 
energy and considering the specific energy of pumping      and compression (    of the 
experimental system. 

Additionally, mineral loss costs   𝑜         corresponds to the mineral that is recovered in the 
cleaner stage and cannot be recovered in the scavenger circuit, which has a high recovery      , 
approximately 97%, according to experimental data, see Eq. (25).  

Moreover, reprocessing costs ( 𝑜      represents the reprocessing of the mineral that is recycled in 
the subsequent stage. This includes the costs of re-grinding per ton of dry mineral (   ) equal to 
5.75    

   
 (Ipinza, 2009), and the marginal cost of electricity (  ) in the “Sistema Interconectado 

del Norte Grande (Chile)” is 49    
   

 (Coordinador Eléctrico Nacional, 2017)   (see Eq. 25). 

 𝑜                              

(25)  𝑜                                  

 𝑜                       

 

4.2.3 Uncertainty in the model-based optimization 

As mentioned in Navia et al. (2016), in this application, uncertainty in the model-based 
optimization originated from experimental and simulated sources. The simulated uncertainty has 
been implemented as a mismatch in the physicochemical description of      for both species. 
Although flotation can be described as a pseudo-first-order reaction, the physical dependencies for 
recovery are still not fully understood (Savassi, 2005). In this work, this uncertainty has been 
simulated using the mismatch from Eq. (26) in the description of      for the model implemented in 
the RTO. 



     
              

 

  
             𝑙 𝑜               (26) 

where      is the kinetics constant for species i and was calculated as the mean of the    operational 
points performed for the operational variables model that depend on the optimization variables   
and the fitted parameters  . A comparison between Eqs. (20) and (25) illustrates that the simulated 
uncertainty in      can be classified as structural because the model neglects the influence of 
operational conditions in flotation kinetics.  

On the other hand, the experimental uncertainty is related to the action of the regulatory layer and 
the precision of control instruments. However, another source of uncertainty in this work is the 
regression done to describe a relationship between operational variables and controlled variables. 
This was achieved through a linear model, which allows optimizing the metallurgic result as a 
function of the previously selected inputs variables:       and  .  

For describing a metallurgical simulator of a flotation column, it is necessary to relate the 
operational variables with the controlled variables (or degrees of freedom of the system), through an 
experimental design 23 and 4 central points. Therefore, three responses were measured, which are 
gas (  ), wash water (  ) and bias (  ) surfaces velocities. With these results, the process can be 
evaluated economically by simulating the operation. Table 3 presents the complete details for the 
experimental design, where the minimum and maximum values for hold up    ) were [8%; 15%], 
for the froth height (  ) were [40 cm; 120 cm], and for bias ( ) were [0 L/min; 1 L/min]. 

Table 3. Experimental design for describing a metallurgic simulator. 

Nº exp    [%]    [cm] B [L/min] 
1 8.0 40 0.0 
2 15.0 40 0.0 
3 8.0 120 0.0 
4 15.0 120 0.0 
5 8.0 40 1.0 
6 15.0 40 1.0 
7 8.0 120 1.0 
8 15.0 120 1.0 
9 11.5 80 0.5 

10 11.5 80 0.5 
11 11.5 80 0.5 
12 11.5 80 0.5 

 

According to the experimental design, models such as Eq. (27) are proposed for the three responses, 
where    corresponds to froth height,    to hold up and    to bias. The parameters obtained for the 
model of surface velocities are shown in Table 4. 



                

 

   

              
   

 

   

                            (27) 

 

Table 4. Parameters of the model of surface velocities. 

Parameter          
   1.30e-01 3.364e-2 3.41e-04 
   -1.91e-03 0 -4.19e-06 
   2.26e+01 0  0 
    -8.00e-02 0  0 
   0  2.249e-1 2.51e-01 
    0 0 1.58e-06 
    0 0 0 
     0 0 0 

It was determined that the surface velocity of wash water does not depend on the decision variables; 
instead, it depends on the controlled variable bias whose variation along the experimental run 
served to determine the parameters of the model; therefore, it is expected that this variable depends 
significantly more on the bias than on the decision variables, since the wash water corresponds to 
the control loop actuator of that degree of freedom. 

4.2.3 Model-based optimization 

The constraints imposed on the studied problem were given by the operational limits of some 
process variables, specifically, the superficial velocities of gas, wash water and bias. Additionally, 
limits were established for metallurgical performance variables and the grade of copper in the 
concentrate. All of these variables, which are shown in Table 5, are affected by structural 
uncertainty. 

Table 5. Constraints of the optimization. 

Variable Lower bound Upper bound Units 
   1.0 2.0 cm/s 
   0.04 0.4 cm/s 
   0.0 0.28 cm/s 

    55 100 % 
   22 34 %w/w 

On the other hand, to identify the point at which the system was to converge, both for offline and 
online implementation, the optimization was solved using the complete phenomenological model, 
i.e., without structural uncertainty. This point was identified as the optimum of the process. 
Similarly, the optimization result used in the uncertain model constructed according to Eq. (26) was 
defined as optimal for the model. The values of the kinetics constants were calculated using the 
experimental run shown in Table 1, where the average of all preliminary points represents      for 
the uncertain model. 



The optimization problem is explained in Eq. (28), where the objective function and the constraints 
depend on the decision variables   and the parameters of the model  . This optimization problem 
also includes the modifier of the objective function     , and the modifiers    and    of the 
constraints. 

   
   

           
   

       
          

             
                             

(28) 

Please note that dual constraint depends on the disturbances of the process   . In Eq. (28),  ,  , and 
  , are defined as Eq. (29), being superscripts UB and LB upper and lower bounds of the given 
variable, respectively. 

      
  

     
  
  
   

     

 
 
 
 
 
 
 
 
 
 
 
        

       
       

        
       

       
       

  

   
      

     
  

  
     

 

 
 
 
 
 
 
 
 
 
 
 
 

 

 

(29) 

As mentioned previously, the modifiers depend on the process gradients, for this work the 
directional derivative approach was used for all cases. The main feature of this method is that it 
allows the use of previous states for the estimation of gradients by summing an additional constraint 
to the system, related to the degree of excitation necessary to estimate the gradients (Brdys & 
Tatjewski, 1994). 

5. Results 
In this chapter, we present the results obtained from simulation and experimentation. It shows the 
evolution of the decision variables and the objective function. 

In each graph, the optimum of the model (  
 ) is presented as a red dashed line, the optimum of the 

process (  
 ) is the blue dash-dot line and the operating value of the variable (  ) is the solid black 

line. In addition, the limits of the decision variables are the dashed gray lines (     ), and the 
disturbances (  ) are the solid black lines. 



5.1 Simulation results 

For the simulation of the process, it is assumed that the input variables change between each steady 
state, therefore changes in output variables are consequences of decision variables and disturbances. 

First, the results obtained in the simulation are presented without the implementation of the 
proposed method, using an approximation of directional derivatives in the process gradient 
estimation. It is possible to appreciate the effect of the changes in the input conditions on the 
optimum of the system, which hinders the optimization layer from bringing the operation of the 
plant to the optimum point. 

Second, the results obtained in the simulation show the application of the proposed method for the 
process gradient estimation, including the effect of the input variables. Therefore, the optimum of 
the plant was reached due to the correction in the gradient estimation step in the optimization layer. 

Figure 8 shows the changes of the disturbances during the application of the optimization layer. The 
values of these variables are assumed to be consequences of processes before the cleaner stage. 
These data were simulated through an ARIMA model that had been previously obtained by using 
real data of variables measured in the operation of a flotation column. 

 
Figure 8. Inputs variables versus iteration number. 



5.1.1 Gradients of the process without correction  

Figure 9 shows the evolution of the economic benefit as function of iteration number. In this case, 
the gradient estimation step does not consider the changes in the input variables. The value of the 
objective function evolves in a similar form to the optimum of the process and model. However, the 
economic benefit obtained is 26% lower than the expected value. 

On the other hand, according to Figure 10, the decision variables do not achieve convergence 
toward the optimum of the plant. It means that an erroneous process gradient estimation keeps the 
system from reaching the optimum. Therefore, it is proposed to make a gradient estimation that 
includes the changes in the disturbances, as shown in Section 5.1.2. 

 
Figure 9. Profits in simulation without corrections in process gradients. 

 
Figure 10. Decision variables in simulation without corrections in process gradients. 

 



5.1.2 Gradients of the process with correction  

Figure 11 shows the evolution of the economic benefit and how it increases as the optimization 
layer iterations rise, reaching up to 10.87 [USD/h] compared to the model values (10.80 USD/h) 
and the process (11.18 USD/h) cannot make a significant difference. The implementation is shown 
up to iteration 24, where 19 of these iterations correspond to resolutions of the optimization 
problem and the first six initial states (       ) for the estimation of gradients by the proposed 
method. 

Figure 12 shows the evolution of the decision variables and its convergence towards the gray line, 
which represents the optimum of the process. In the simulation, this indicates that an appropriate 
estimation of gradients allows obtaining a real optimum operation. 

 
Figure 11. Profits in simulation with corrections in process gradients. 

 

Figure 12. Decision variables in simulation with corrections in process gradients, using the proposed method. 

 



5.2 Experimental results 

Two different cases were performed in the experimental set-up. The first one assumes that there is 
an immediate knowledge of the input conditions, defined as the ideal case; in the second situation it 
is considered that the measurement of the input conditions is not available instantaneously, and only 
an estimate given by an ARIMA model is available, defined as a realistic case. 

The initial operating point for both cases was 75 [cm] and 9 [%] for    and   , respectively. 

The implementation time is different because the first one evaluated the ability of the system to 
remain in an optimum condition, and if it escapes, it subsequently converges to the operational 
optimum; meanwhile, for the second it was expected that the system would reach optimum. 

5.2.1 Ideal case  

Figure 13 shows the simulated input conditions in this implementation. The results obtained show a 
long application of the optimization layer up to approximately 200 minutes. In addition, as shown in 
Figure 14 and Figure 15, it is possible to achieve an optimal operation of the flotation column at 
iteration six, and then at iteration 23, it diverges from the optimal condition for eight iterations 
(approximately) before converging again to the operation optimum of the process. The profit in the 
final part of the flotation column operation was approximately 6.5 [USD / h]. 

 
Figure 13. Inputs conditions versus time in the operation of the flotation column. 

Figure 14 shows the evolution of profit during the implementation of the optimization layer, and it 
also shows the optimum of the process and model. A rise from the initial point of operation can be 



noticed, reaching a value close to 7 [USD/h] in the last iteration. Moreover, from iteration 11, the 
system converges to the vicinity of the optimal operation, and it is maintained around the blue and 
red lines representing the optima of the process and model, respectively. 

 
Figure 14. Profit versus iteration number in the RTO and time in the operation of the flotation column in the ideal 

case. 

Figure 15 shows the evolution of the decision variables in the operation of the flotation column. The 
convergence toward the optimum of the process is achieved in iteration 15 approximately. 
Subsequently, at iteration 23, the system is decoupled from the optimum operation. Because of this 
change, it is possible to notice that the system takes approximately eight iterations to converge 
again to the operational optimum. 

The decoupling mentioned above can be explained by the lack of identifiability in the system in 
iteration 23, according to Figure 15. Before this instant, the system did not have noticeable changes 
to be able to estimate the gradient in an appropriate form. Although the dual constraint is imposed, 
which ensures a minimum of system excitation, there is a trade-off between how much the system is 
forced to achieve identifiability and its stability.  



 

Figure 15. Decision variables versus iteration number and time for the ideal case. 

5.2.2 Realistic case 

The RTO layer was implemented with measurements of input conditions estimated by using 
ARIMA models. The purpose was to simulate a realistic situation, where the availability of some 
variables is not immediate since they are measurements obtained by laboratory analysis or another 
method that is not available online. The running time was 85 minutes. 

The optimization problem was solved seven times to reach the operational optimum, as is shown in 
Figure 16. The profit increased with the implementation of the optimization layer, reaching a value 
equal to 6 [USD/h], close to the optimum of both process and model. With regard to the objective 
function, it is difficult to establish that the system converged toward the real optimum of the 
flotation column since there are no significant differences between the optimum values of the model 
and those of the process. However, according to Figure 17, the decision variables manage to reach 
the optimum of the process approximately at iteration number 15. At the last operational point 
shown, the froth depth differs by 8.42% from the expected value, while hold-up differs by 2.21%. 
Therefore, the system managed to reach the optimum operation of the laboratory-scale flotation 
column assuming a case with input variables estimated through an ARIMA model.  



 
Figure 16. Profits versus iteration number and time for the realistic case. 

 
Figure 17.  Decision variables versus iteration number and time for the realistic case. 



6. Conclusions 
In this work, an extended form of gradient estimation has been proposed in the MA method 
presented by Marchetti et al. (2010), in the RTO. The idea is to include the available information of 
significant disturbances, in order to create a more realistic scenario. This proposal was tested in 
simulations and in experiments.  

Because the mining industry is one of the most important economic sectors in Chile, and since 
flotation columns are used at the end of the circuit of the concentration stage, this paper presents an 
implementation of an RTO layer to a laboratory-scale flotation column that includes the effect of 
disturbances from adjacent units. The results show that the optimal operation of the system changes 
under time-varying input conditions. Therefore, if the gradient estimation step does not consider the 
disturbances, the system could not converge to the desired operational point. In other words, the use 
of this extended gradient estimation method allows the optimal operation to be tracked when the 
feed characteristics change while the RTO layer is working, and consequently, the economic benefit 
of this process can be increased by 26%. 

The experimental results show that the system achieved the optimal operation. During the 
implementation, the system presented a divergence from the optimal performance because the 
gradients were poorly estimated; this explains why, for the dual constraint, the application of the 
supervisory layer was made by prioritizing the stability of the system over identifiability. 
Additionally, two situations were analyzed: the ideal case, where the availability of disturbances 
data was immediately available; and the realistic case, where an ARIMA model gives values for 
each input variable due to the data was not available at once. With this in mind, it was demonstrated 
that if enough historical data are available to generate an autoregressive model, the system can 
converge to the optimum of the plant. 

It Future work should advance the time reduction in the data collection for the stage of estimation of 
gradients, which is the main disadvantage of the method presented herein, where it is necessary to 
have as many measures in steady state as input variables to the system, that is either disturbance and 
decision variables. Furthermore, extracting gradient information from the historical database using 
other methodologies is suggested. 
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