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We provide two weakly convergent algorithms for finding a zero of the sum of a maximally
monotone operator, a cocoercive operator, and the normal cone to a closed vector subspace of
a real Hilbert space. The methods exploit the intrinsic structure of the problem by activating
explicitly the cocoercive operator in the first step, and taking advantage of a vector space
decomposition in the second step. The second step of the first method is a Douglas-Rachford
iteration involving the maximally monotone operator and the normal cone. In the second
method it is a proximal step involving the partial inverse of the maximally monotone operator
with respect to the vector subspace. Connections between the proposed methods and other
methods in the literature are provided. Applications to monotone inclusions with finitely
many maximally monotone operators and optimization problems are examined.
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1. Introduction

This paper is concerned with the numerical resolution of the following problem.

Problem 1.1: LetH be a real Hilbert space and let V be a closed vector subspace
of H. The normal cone to V is denoted by NV . Let A : H → 2H be a maximally
monotone operator and let B : H → H be a β–cocoercive operator in V , i.e., it
satisfies

(∀x ∈ V )(∀y ∈ V ) 〈x− y | Bx−By〉 ≥ β‖Bx−By‖2. (1)

The problem is to

find x ∈ H such that 0 ∈ Ax+Bx+NV x, (2)

under the assumption that the set of solutions Z of (2) is nonempty.
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Problem 1.1 arises in a wide range of areas such as optimization [17, 42], vari-
ational inequalities [30, 44, 45], monotone operator theory [22, 31, 36, 41], partial
differential equations [25, 26, 30, 33, 48], economics [28, 35], signal and image pro-
cessing [2, 12, 13, 20, 21, 38], evolution inclusions [1, 27, 40], and traffic theory
[7, 8, 24, 37, 39], among others.
In the particular case when B ≡ 0, (2) becomes

find x ∈ V such that (∃ y ∈ V ⊥) y ∈ Ax, (3)

where V ⊥ stands for the orthogonal complement of V . Problem (3) has been studied
in [41] and it is solved with the method of partial inverses. On the other hand, when
V = H, (2) reduces to

find x ∈ H such that 0 ∈ Ax+Bx, (4)

which can be solved by the forward-backward splitting (see [15] and the references
therein). In the general case, Problem 1.1 can be solved by several algorithms, but
any of them exploits the intrinsic structure of the problem. The forward-backward
splitting [15] can solve Problem 1.1 by an explicit computation of B and an implicit
computation involving the resolvent of A+NV . The disadvantage of this method
is that this resolvent is not always easy to compute. It is preferable, hence, to ac-
tivate separately A and NV . In [34] an ergodic method involving the resolvents of
each maximally monotone operator separately is proposed, and weak convergence
to a solution to Problem 1.1 is obtained. However, the method includes vanish-
ing parameters which leads to numerical instabilities and, moreover, it involves
the computation of (Id+γB)−1 for some positive constant γ, which is not always
easy to compute explicitly. The methods proposed in [10, 16, 18, 41] for finding
a zero of the sum of finitely many maximally monotone operators overcomes the
problem caused by the vanishing parameters in [34], but it still needs to compute
(Id+γB)−1. The primal-dual method proposed in [46] overcomes the disadvantages
of previous algorithms by computing explicit steps of B. However, the method does
not take advantage of the vector subspace involved and, as a consequence, it needs
to store several auxiliary variables at each iteration, which can be difficult for high
dimensional problems.
In this paper we propose two methods for solving Problem 1.1 that exploit all the

intrinsic properties of the problem. The first algorithm computes an explicit step on
B followed by a Douglas-Rachford step [31, 43] involving A and NV . The second
method computes an explicit step on B followed by an implicit step involving
the partial inverse of A with respect to V . The latter method generalizes the
partial inverse method [41] and the forward-backward splitting [15] in the particular
cases (3) and (4), respectively. We also provide connections between the proposed
methods, we study some relations with other methods in the literature, and we
illustrate the flexibility of this framework via some applications.
The paper is organized as follows. In Section 2 we provide the notation and

some preliminaries. In Section 3 we provide a new version of the Krasnosel’skĭı-
Mann iteration for the composition of averaged operators. In Section 4 the lat-
ter method is applied to particular averaged operators for obtaining the forward-
Douglas-Rachford splitting and in Section 5 the forward-partial inverse algorithm
is proposed. We also provide connections with other algorithms in the literature.
Finally, in Section 6 we examine an application for finding a zero of a sum of m
maximally monotone operators and a cocoercive operator and an application to
optimization problems.
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2. Notation and preliminaries

Throughout this paper, H is a real Hilbert space with scalar product denoted
by 〈· | ·〉 and associated norm ‖ · ‖. The symbols ⇀ and → denote, respectively,
weak and strong convergence and Id denotes the identity operator. The indicator
function of a subset C of H is

ιC : x 7→

{

0, if x ∈ C;

+∞, if x /∈ C,
(5)

if C is nonempty, closed, and convex, the projection of x onto C, denoted by PCx, is
the unique point in Argminy∈C ‖x−y‖, and the normal cone to C is the maximally
monotone operator

NC : H → 2H : x 7→

{

{

u ∈ H | (∀y ∈ C) 〈y − x | u〉 ≤ 0
}

, if x ∈ C;

∅, otherwise.
(6)

An operator R : H → H is nonexpansive if

(∀x ∈ H)(∀y ∈ H) ‖Rx−Ry‖ ≤ ‖x− y‖ (7)

and FixR =
{

x ∈ H | Rx = x
}

is the set of fixed points of R. An operator T : H →
H is α–averaged for some α ∈]0, 1[ if

T = (1− α) Id+αR (8)

for some nonexpansive operator R, or, equivalently,

(∀x ∈ H)(∀y ∈ H) ‖Tx− Ty‖2 ≤ ‖x− y‖2 −
1− α

α
‖(Id−T )x− (Id−T )y‖2, (9)

or

(∀x ∈ H)(∀y ∈ H) 2(1− α) 〈x− y | Tx− Ty〉 ≥ ‖Tx− Ty‖2 + (1− 2α)‖x− y‖2.
(10)

On the other hand, T is β–cocoercive for some β ∈ ]0,+∞[ if

(∀x ∈ H)(∀y ∈ H) 〈x− y | Tx− Ty〉 ≥ β‖Tx− Ty‖2. (11)

We say that T is firmly nonexpansive if T is 1/2–averaged, or equivalently, if T is
1–cocoercive.
We denote by graA =

{

(x, u) ∈ H ×H | u ∈ Ax
}

the graph of a set-valued

operator A : H → 2H, by domA =
{

x ∈ H | Ax 6= ∅
}

its domain, by zerA =
{

x ∈ H | 0 ∈ Ax
}

its set of zeros, and by JA = (Id+A)−1 its resolvent. If A is
monotone, then JA is single-valued and nonexpansive and, furthermore, if A is
maximally monotone, then dom JA = H. Let A : H → 2H be maximally monotone.
The reflection operator of A is RA = 2JA − Id, which is nonexpansive. The partial
inverse of A with respect to a vector subspace V of H, denoted by AV , is defined
by

(∀(x, y) ∈ H2) y ∈ AV x ⇔ (PV y + PV ⊥x) ∈ A(PV x+ PV ⊥y). (12)
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For complements and further background on monotone operator theory, see [1, 6,
41, 47, 48].

3. Krasnosel’skĭı–Mann iterations for the composition of averaged operators

The following result will be useful for obtaining the convergence of the first method.
It provides the weak convergence of the iterates generated by the Krasnosel’skĭı–
Mann iteration [15, 29, 32] applied to the composition of finitely many averaged
operators to a common fixed point. In [6, Corollary 5.15] a similar method is
proposed with guaranteed convergence, but without including errors in the com-
putation of the operators involved. On the other hand, in [15] another algorithm
involving inexactitudes in the computation of the averaged operators is studied in
the case when such operators may vary at each iteration. However, the relaxation
parameters in this case are forced to be in ]0, 1]. We propose a new method which
includes summable errors in the computation of the averaged operators and allows
for a larger choice for the relaxation parameters. First, for every strictly positive
integer i and a family of averaged operators (Tj)1≤j≤m, let us define

m
Π
j=i

Tj =

{

Ti ◦ Ti+1 ◦ · · · ◦ Tm, if i ≤ m;

Id, otherwise.
(13)

Proposition 3.1: Let m ≥ 1, for every i ∈ {1, . . . ,m}, let αi ∈ ]0, 1[, let Ti be
an αi-averaged operator, and let (ei,n)n∈N be a sequence in H. In addition, set

α =
m max{α1, . . . , αm}

1 + (m− 1)max{α1, . . . , αm}
, (14)

let (λn)n∈N be a sequence in ]0, 1/α[, suppose that Fix(T1 ◦ · · · ◦ Tm) 6= ∅, and
suppose that

∑

n∈N

λn(1− αλn) = +∞ and (∀i ∈ {1, . . . ,m})
∑

n∈N

λn‖ei,n‖ < +∞. (15)

Moreover, let z0 ∈ H and set, for every n ∈ N,

zn+1 = zn+λn

(

T1

(

T2(· · ·Tm−1(Tmzn+em,n)+em−1,n · · · )+e2,n
)

+e1,n−zn

)

. (16)

Then the following hold for some z ∈ Fix(T1 ◦ · · · ◦ Tm).

(i) zn ⇀ z.

(ii)
∑

n∈N

λn(1− αλn)
∥

∥

∥

m
Π
j=1

Tjzn − zn

∥

∥

∥

2
< +∞.

(iii)
m
Π
j=1

Tjzn − zn → 0.

(iv) zn+1 − zn → 0.

(v) max
1≤i≤m

∑

n∈N

λn

∥

∥

∥
(Id−Ti)

m
Π

j=i+1
Tjzn − (Id−Ti)

m
Π

j=i+1
Tjz

∥

∥

∥

2
< +∞.

Proof : (i): First note that (16) can be written equivalently as

(∀n ∈ N) zn+1 = zn + λn(Tzn + en − zn), (17)
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where







T = T1 ◦ T2 ◦ · · · ◦ Tm =
m
Π
j=1

Tj

en = T1

(

T2(· · · Tm−1(Tmzn + em,n) + em−1,n · · · ) + e2,n
)

+ e1,n − Tzn.
(18)

It follows from [15, Lemma 2.2(iii)] that T is α-averaged with α defined in (14),
and, using the nonexpansivity of (Ti)1≤i≤m, we obtain, for every n ∈ N,

‖en‖ ≤ ‖T1

(

T2(· · · Tm−1(Tmzn + em,n) + em−1,n · · · ) + e2,n
)

− T1

(

T2(· · · Tm−1(Tmzn) · · · )
)

‖+ ‖e1,n‖

≤ ‖T2

(

T3(· · · Tm−1(Tmzn + em,n) + em−1,n · · · ) + e3,n
)

− T2

(

T3(· · ·Tm−1(Tmzn) · · · )
)

‖+ ‖e2,n‖+ ‖e1,n‖

≤

...

≤ ‖Tm−1(Tmzn + em,n)− Tm−1(Tmzn)‖+ ‖em−1,n‖+ · · ·+ ‖e2,n‖+ ‖e1,n‖

≤

m
∑

i=1

‖ei,n‖. (19)

Hence, it follows from (15) that

∑

n∈N

λn‖en‖ ≤
∑

n∈N

λn

m
∑

i=1

‖ei,n‖ =

m
∑

i=1

∑

n∈N

λn‖ei,n‖ < +∞. (20)

Now, set R = (1 − 1/α) Id+(1/α)T and, for every n ∈ N, set µn = αλn. Then
it follows from the firm nonexpansiveness of T and (8) that R is a nonexpansive
operator, FixR = Fix T , and (17) is equivalent to

(∀n ∈ N) zn+1 = zn + µn(Rzn + cn − zn), (21)

where cn = en/α. Since (µn)n∈N is a sequence in ]0, 1[ and (15) and (20) yields
∑

n∈N µn(1 − µn) = +∞ and
∑

n∈N µn‖cn‖ < +∞, the result follows from [15,
Lemma 5.1].
(ii): Fix n ∈ N. It follows from (17), Cauchy-Schwartz inequality, and [6,

Lemma 2.13(ii)] that

‖zn+1 − z‖2 = ‖(1 − λn)(zn − z) + λn(Tzn − Tz + en)‖
2

≤ ‖(1 − λn)(zn − z) + λn(Tzn − Tz)‖2 + εn

= (1− λn)‖zn − z‖2 + λn‖Tzn − Tz‖2−λn(1−λn)‖Tzn − zn‖
2+ εn,

(22)

where,

(∀k ∈ N) εk = λ2
k‖ek‖

2 + 2λk‖(1− λk)(zk − z) + λk(Tzk − Tz)‖‖ek‖. (23)
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Note that the convexity of ‖ · ‖, the nonexpansivity of T , and (i) yield

∑

k∈N

εk =
∑

k∈N

λ2
k‖ek‖

2 + 2
∑

k∈N

λk‖(1 − λk)(zk − z) + λk(Tzk − Tz)‖‖ek‖

≤
(

∑

k∈N

λk‖ek‖
)2

+ 2
∑

k∈N

λk

(

(1− λk)‖zk − z‖+ λk‖Tzk − Tz‖
)

‖ek‖

≤
(

∑

k∈N

λk‖ek‖
)2

+ 2
(

sup
k∈N

‖zk − z‖
)

∑

k∈N

λk‖ek‖ < +∞. (24)

On one hand, since T is α-averaged, it follows from (22) and (9) that

‖zn+1 − z‖2 ≤ (1− λn)‖zn − z‖2 + λn

(

‖zn − z‖2 −
(1− α)

α
‖Tzn − zn‖

2
)

− λn(1− λn)‖Tzn − zn‖
2 + εn

≤ ‖zn − z‖2 −
λn(1− αλn)

α
‖Tzn − zn‖

2 + εn, (25)

and, hence, the result is deduced from [14, Lemma 3.1(iii)].
(iii): It follows from (15) and (ii) that lim ‖Tzn − zn‖ = 0. Moreover, it follows

from (17) that

(∀n ∈ N) ‖Tzn+1 − zn+1‖ ≤ ‖Tzn+1 − Tzn‖+ (1− λn)‖Tzn − zn‖+ λn‖en‖

≤ ‖zn+1 − zn‖+ (1− λn)‖Tzn − zn‖+ λn‖en‖

≤ ‖Tzn − zn‖+ 2λn‖en‖. (26)

Hence, from (20) and [14, Lemma 3.1] we deduce that (‖Tzn − zn‖)n∈N converges,
and therefore, Tzn − zn → 0.
(iv): From (17), (18), (iii), and (20) we obtain

‖zn+1 − zn‖ ≤ λn‖Tzn − zn‖+ λn‖en‖ ≤ (1/α)‖Tzn − zn‖+ λn‖en‖ → 0. (27)

(v): Since (Ti)1≤i≤m are averaged operators, we have from (18) and (9) that

‖Tzn− Tz‖2 ≤
∥

∥

∥

m
Π
j=2

Tjzn−
m
Π
j=2

Tjz
∥

∥

∥

2
−

1− α1

α1

∥

∥

∥
(Id−T1)

m
Π
j=2

Tjzn− (Id−T1)
m
Π
j=2

Tjz
∥

∥

∥

2

≤
∥

∥

∥

m
Π
j=3

Tjzn−
m
Π
j=3

Tjz
∥

∥

∥

2
−

1− α2

α2

∥

∥

∥
(Id−T2)

m
Π
j=3

Tjzn− (Id−T2)
m
Π
j=3

Tjz
∥

∥

∥

2

−
1− α1

α1

∥

∥

∥
(Id−T1)

m
Π
j=2

Tjzn− (Id−T1)
m
Π
j=2

Tjz
∥

∥

∥

2

...

≤ ‖zn − z‖2 −

m
∑

i=1

1− αi

αi

∥

∥

∥
(Id−Ti)

m
Π

j=i+1
Tjzn − (Id−Ti)

m
Π

j=i+1
Tjz

∥

∥

∥

2
.

(28)



October 10, 2013 Optimization optim1

Optimization 7

Hence, from (22) we deduce

‖zn+1−z‖2 ≤ ‖zn−z‖2−λn

m
∑

i=1

1− αi

αi

∥

∥

∥
(Id−Ti)

m
Π

j=i+1
Tjzn−(Id−Ti)

m
Π

j=i+1
Tjz

∥

∥

∥

2
+εn.

(29)
Therefore, it follows from [14, Lemma 3.1(iii)] that

m
∑

i=1

1− αi

αi

∑

n∈N

λn

∥

∥

∥
(Id−Ti)

m
Π

j=i+1
Tjzn − (Id−Ti)

m
Π

j=i+1
Tjz

∥

∥

∥

2

=
∑

n∈N

λn

m
∑

i=1

1− αi

αi

∥

∥

∥
(Id−Ti)

m
Π

j=i+1
Tjzn − (Id−Ti)

m
Π

j=i+1
Tjz

∥

∥

∥

2
< +∞, (30)

which yields the result. �

Remark 3.1: In the particular case when m = 1, Proposition 3.1 provides the
weak convergence of the iterates generated by the classical Krasnosel’skĭı-Mann
iteration [15, 29, 32] in the case of averaged operators. This result is interesting
in this own right since it generalizes [6, Proposition 5.15] by considering errors on
the computation of the involved operator and provides a larger choice of relaxation
parameters than in the nonexpansive case (see, e.g.,[15, 29, 32]).

4. Forward-Douglas-Rachford splitting

In this section we provide the first method for solving Problem 1.1. We provide a
characterization of the solutions to Problem 1.1, then the algorithm is proposed
and its weak convergence to a solution to Problem 1.1 is proved.

4.1. Characterization

Let us start with a characterization of the solutions to Problem 1.1.

Proposition 4.1: Let γ ∈ ]0, 2β[ and H, V , A, B, and Z be as in Problem 1.1.
Define

{

Tγ = 1
2(Id+RγA ◦RNV

) : H → H

Sγ = Id−γPV ◦B ◦ PV : H → H.
(31)

Then the following hold.

(i) Tγ is firmly nonexpansive.
(ii) Sγ is γ/(2β)–averaged.
(iii) Let x ∈ H. Then x ∈ Z if and only if x ∈ V and

(∃ y ∈ V ⊥∩(Ax+Bx)) such that x−γ(y−PV ⊥Bx) ∈ Fix(Tγ◦Sγ). (32)

Proof : (i): Since γA is maximally monotone JγA is firmly nonexpansive and
RγA = 2JγA− Id is nonexpansive. An analogous argument yields the nonexpansiv-
ity of RNV

= 2PV − Id. Hence, RγA ◦ RNV
is nonexpansive and the result follows

from the definition of a firmly nonexpansive operator in (8).
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(ii): Since V is a closed vector subspace of H we have that PV is linear and
P ∗
V = PV . Hence, the cocoercivity of B in V yields, for every (z, w) ∈ H2 and

η ∈ ]0,+∞[,

〈

z − w | ηPV

(

B(PV z)−B(PV w)
)〉

= η 〈PV z − PV w | B(PV z)−B(PV w)〉

≥ ηβ‖B(PV z)−B(PV w)‖
2

≥ (β/η)‖ηPV

(

B(PV z)
)

− ηPV

(

B(PV w)
)

‖2.
(33)

In the particular case when η = β, (33) implies that the operator z 7→ βPV ◦B◦PV z
is firmly nonexpansive (1/2-averaged). Since γ ∈ ]0, 2β[ the result follows from [15,
Lemma 2.3].
(iii): Let x ∈ H be a solution to Problem 1.1. We have x ∈ V and there exists

y ∈ V ⊥ = NV x such that y ∈ Ax + Bx. Set z = x − γ(y − PV ⊥Bx). Note that
RNV

z = 2PV z − z = x + γ(y − PV ⊥Bx) and PV z = x. Hence, since B is single
valued and, for every w ∈ V , RV w = w, it follows from the linearity of PV that

x+γy−γBx = x+γ(y−PV ⊥Bx)−γPV Bx = RNV
z−γPV Bx = RNV

(z−γPV BPV z),
(34)

and, therefore,

y ∈ Ax+Bx ⇔ x+ γy − γBx ∈ x+ γAx

⇔ x = JγA(x+ γy − γBx) = JγA
(

RNV
(z − γPV BPV z)

)

⇔ x =
1

2

(

2JγA
(

RNV
(z − γPV BPV z)

)

−RNV
(z − γPV BPV z) + x+ γy − γBx

)

⇔ x =
1

2

(

RγA

(

RNV
(z − γPV BPV z)

)

+ x+ γy − γBx
)

⇔ x =
1

2

(

RγA

(

RNV
(z − γPV BPV z)

)

+ z − γPV BPV z
)

+ γ(y − PV ⊥Bx)

⇔ z = Tγ ◦ Sγz, (35)

which yields the result. �

4.2. Algorithm and convergence

In the following result we propose our first algorithm and we prove its convergence
to a solution to Problem 1.1. The method is inspired from the characterization
provided in Proposition 4.1 and Proposition 3.1.

Theorem 4.2 : Let H, V , A, B, and Z be as in Problem 1.1, let γ ∈ ]0, 2β[, let
α = max{2/3, 2γ/(γ + 2β)}, let (λn)n∈N be a sequence in ]0, 1/α[, let (an)n∈N and
(bn)n∈N be sequences in H, and suppose that

∑

n∈N

λn(1− αλn) = +∞ and
∑

n∈N

λn(‖an‖+ ‖bn‖) < +∞. (36)
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Moreover, let z0 ∈ H and set

(∀n ∈ N)

















xn = PV zn
yn = (xn − zn)/γ
sn = xn − γPV

(

Bxn + an
)

+ γyn
pn = JγAsn + bn
zn+1 = zn + λn(pn − xn).

(37)

Then the sequences (xn)n∈N and (yn)n∈N are in V and V ⊥, respectively, and the
following hold for some x ∈ Z and some y ∈ V ⊥ ∩

(

Ax+ PV Bx
)

.

(i) xn ⇀ x and yn ⇀ y.
(ii) xn+1 − xn → 0 and yn+1 − yn → 0.
(iii)

∑

n∈N λn‖PV (Bxn −Bx)‖2 < +∞.

Proof : First note that (37) can be written equivalently as

(∀n ∈ N)









xn = PV zn
yn = −PV ⊥zn/γ
zn+1 = zn + λn

(

Tγ(Sγzn + cn) + bn − zn
)

,
(38)

where Tγ and Sγ are defined in (31) and, for every n ∈ N, cn = −γPV an. We have
from (36) that

∑

n∈N

λn(‖bn‖+‖cn‖) ≤
∑

n∈N

λn(‖bn‖+γ‖an‖) ≤ max{1, γ}
∑

n∈N

λn(‖an‖+‖bn‖) < +∞.

(39)
Moreover, it follows from Proposition 4.1(i)&(ii) that Tγ is 1/2-averaged and Sγ

is γ/(2β)-averaged. Altogether, by setting m = 2, T1 = Tγ , T2 = Sγ , α1 = 1/2,
α2 = γ/(2β), e1,n = bn, e2,n = cn, and noting that

2max{1/2, γ/(2β)}

1 + max{1/2, γ/(2β)}
= max{2/3, 2γ/(γ + 2β)} = α, (40)

it follows from Proposition 3.1 that there exists z ∈ Fix(Tγ ◦ Sγ) such that

zn ⇀ z (41)

zn+1 − zn → 0 (42)
∑

n∈N

λn‖(Id−Sγ)zn − (Id−Sγ)z‖
2 < +∞. (43)

Now set x = PV z and y = −PV ⊥z/γ. It follows from Proposition 4.1(iii) that x is
solution to Problem 1.1 and y = y − PV ⊥Bx for some y ∈ V ⊥ ∩ (Ax+Bx). Then,
y ∈ V ⊥ ∩ (Ax+ PV Bx).
(i): It is clear from (38) and (41) that xn ⇀ x and yn ⇀ y.
(ii): It is a consequence of (42) and

(∀n ∈ N) ‖zn+1 − zn‖
2 = ‖xn+1 − xn‖

2 + γ2‖yn+1 − yn‖
2. (44)

(iii): It follows from (31) that

(∀n ∈ N) ‖(Id−Sγ)zn − (Id−Sγ)z‖
2 = γ2‖PV (Bxn)− PV (Bx)‖2. (45)
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Hence, the result follows from (43). �

Remark 4.1: Note that, if lim λn > 0, then Theorem 4.2(iii) implies PV (Bxn) →
PV (Bx).

5. Forward-partial-inverse splitting

We provide a second characterization of solutions to Problem 1.1 via the partial
inverse operator introduced in [41]. This characterization motivates a second al-
gorithm, whose convergence to a solution to Problem 1.1 is proved. The proposed
method generalizes the partial inverse method proposed in [41] and the forward-
backward splitting [15].

5.1. Characterization

Proposition 5.1: Let γ ∈ ]0,+∞[ and H, A, B, and V be as in Problem 1.1.
Define

{

Aγ = (γA)V : H → 2H

Bγ = γPV ◦B ◦ PV : H → V.
(46)

Then the following hold.

(i) Aγ is maximally monotone.
(ii) Bγ is β/γ–cocoercive.
(iii) Let x ∈ H. Then x is a solution to Problem 1.1 if and only if x ∈ V and

(∃ y ∈ V ⊥∩(Ax+Bx)) such that x+γ(y−PV ⊥Bx) ∈ zer(Aγ+Bγ). (47)

Proof : (i): Since γA is maximally monotone, the result follows from [41, Propo-
sition 2.1]. (ii): It is a direct consequence of (33). (iii): Let x ∈ H be a solution
to Problem 1.1. We have x ∈ V and there exists y ∈ V ⊥ = NV x such that
y ∈ Ax+Bx. Since B is single valued and PV is linear, it follows from (12) that

y ∈ Ax+Bx ⇔ γy − γBx ∈ γAx

⇔ −γPV (Bx) ∈ (γA)V
(

x+ γ(y − PV ⊥Bx)
)

⇔ 0 ∈ (γA)V (x+ γ(y − PV ⊥Bx))

+ γPV

(

B
(

PV (x+ γ(y − PV ⊥Bx))
))

⇔ x+ γ(y − PV ⊥Bx) ∈ zer(Aγ + Bγ), (48)

which yields the result. �

Remark 5.1: Note that the characterizations provided in Proposition 4.1 y
Proposition 5.1 are related. Indeed, Proposition 4.1(iii) and Proposition 5.1(iii)
yield

Z = PV (Fix(Tγ ◦Sγ)) = PV (zer(Aγ +Bγ)) and RNV
(Fix(Tγ ◦Sγ)) = zer(Aγ +Bγ).

(49)
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5.2. Algorithm and convergence

Theorem 5.2 : Let H, V , A, B, and Z be as in Problem 1.1, let γ ∈ ]0,+∞[, let
ε ∈ ]0,max{1, β/γ}[, let (δn)n∈N be a sequence in [ε, (2β/γ) − ε], and let (λn)n∈N
be a sequence in [ε, 1]. Moreover, let x0 ∈ V , let y0 ∈ V ⊥, and, for every n ∈ N,
consider the following routine.

Step 1. Find (pn, qn) ∈ H2 such that xn − δnγPV Bxn + γyn = pn + γqn

and
PV qn
δn

+ PV ⊥qn ∈ A
(

PV pn +
PV ⊥pn
δn

)

. (50)

Step 2. Set xn+1 = xn + λn(PV pn − xn) and yn+1 = yn + λn(PV ⊥qn − yn).

Go to Step 1.

Then, the sequences (xn)n∈N and (yn)n∈N are in V and V ⊥, respectively, and the
following hold for some x ∈ Z and y ∈ V ⊥ ∩ (Ax+ PV Bx).

(i) xn ⇀ x and yn ⇀ y.
(ii) xn+1 − xn → 0 and yn+1 − yn → 0.
(iii) PV Bxn → PV Bx.

Proof : Since x0 ∈ V and y0 ∈ V ⊥, (50) yields (xn)n∈N ⊂ V and (yn)n∈N ⊂ V ⊥.
Thus, for every n ∈ N, it follows from (50) and the linearity of PV and PV ⊥ that

PV pn + γPV qn = PV (pn + γqn) = PV (xn − δnγPV Bxn + γyn) = xn − δnγPV Bxn
(51)

and

PV ⊥pn +γPV ⊥qn = PV ⊥(pn + γqn) = PV ⊥(xn − δnγPV Bxn + γyn) = γyn, (52)

which yield

{

PV qn = (xn − δnγPV Bxn − PV pn)/γ = (xn − xn+1)/(γλn)− δnPV Bxn

PV ⊥pn = γ(yn − PV ⊥qn) = γ(yn − yn+1)/λn.
(53)

On the other hand, from (50) we obtain

PV pn = xn +
xn+1 − xn

λn
and PV ⊥qn = yn +

yn+1 − yn
λn

. (54)

Hence, it follows from (53) and (50) that

(xn − xn+1)

λnδnγ
−PV Bxn+yn+

yn+1 − yn
λn

∈ A
(

xn+
xn+1 − xn

λn
+
γ(yn − yn+1)

λnδn

)

, (55)

or equivalently,

(xn − xn+1)

λnδn
−γPV Bxn+γyn+

γ(yn+1 − yn)

λn
∈γA

(

xn+
xn+1 − xn

λn
+
γ(yn − yn+1)

λnδn

)

.

(56)
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Thus, by using the definition of partial inverse (12) we obtain

(xn − xn+1)

λnδn
− γPV Bxn +

γ(yn − yn+1)

λnδn

∈ (γA)V

(

xn + γyn +
xn+1 − xn + γ(yn+1 − yn)

λn

)

, (57)

which can be written equivalently as

xn + γyn − δnγPV Bxn −

(

xn + γyn +
xn+1 − xn + γ(yn+1 − yn)

λn

)

∈ δn(γA)V

(

xn + γyn +
xn+1 − xn + γ(yn+1 − yn)

λn

)

. (58)

Hence, we have

xn + γyn +
xn+1 − xn + γ(yn+1 − yn)

λn
= Jδn(γA)V (xn + γyn − δnγPV Bxn), (59)

or equivalently,

xn+1+γyn+1 = xn+γyn+λn

(

Jδn(γA)V (xn+γyn− δnγPV Bxn)−xn+γyn

)

. (60)

If, for every n ∈ N, we denote rn = xn + γyn, from (60) and (46) we obtain

rn+1 = rn + λn

(

JδnAγ
(rn − δnBγrn)− rn

)

. (61)

Since (δn)n∈N ⊂ [ε, 2(β/γ) − ε], it follows from Proposition 5.1(i)&(ii) and [3, The-
orem 2.8] that there exists r ∈ zer(Aγ + Bγ) such that rn ⇀ r, Bγrn → Bγr,
rn − rn+1 = λn(rn − JδnAγ

(rn − δnBγrn)) → 0. Hence, by taking x = PV r and

y = PV ⊥r/γ, Proposition 5.1(iii) asserts that x ∈ Z, y ∈ V ⊥ ∩ (Ax + PV Bx), and
the results follow from

(∀(x, y) ∈ H2) 〈x | y〉 = 〈PV x | PV y〉+ 〈PV ⊥x | PV ⊥y〉 (62)

and the definition of Bγ . �

Remark 5.2:

(i) It is known that the forward–backward splitting admits errors in the compu-
tations of the operators involved [15]. In our algorithm these inexactitudes
have not been considered for simplicity.

(ii) In the particular case when γ < 2β, λn ≡ 1, and B ≡ 0, the forward-
partial-inverse method reduces to the partial inverse method proposed in
[41] for solving (3).

The sequence (δn)n∈N in Theorem 5.2 can be manipulated in order to accelerate
the algorithm. However, as in [41], Step 1 in Theorem 5.2 is not always easy to
compute. The following result show us a particular case of our method in which
Step 1 can be obtained explicitly when the resolvent of A is computable.
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Corollary 5.3: Let γ ∈ ]0, 2β[, let x0 ∈ V , let y0 ∈ V ⊥, let (λn)n∈N be a sequence
in [ε, 1], and consider the following routine.

(∀n ∈ N)













sn = xn − γPV Bxn + γyn
pn = JγAsn
yn+1 = yn + (λn/γ)(PV pn − pn)
xn+1 = xn + λn(PV pn − xn).

(63)

Then, the sequences (xn)n∈N and (yn)n∈N are in V and V ⊥, respectively, and the
following hold for some x ∈ Z and y ∈ V ⊥ ∩ (Ax+ PV Bx).

(i) xn ⇀ x and yn ⇀ y.
(ii) xn+1 − xn → 0 and yn+1 − yn → 0.
(iii) PV Bxn → PV Bx

Proof : For every n ∈ N, set qn = (sn − pn)/γ. It follows from (63) that

{

γqn = sn − pn ∈ γApn

sn = pn + γqn,
(64)

which yield xn−δnγPV Bxn+γyn = pn+γqn, pn−PV pn = PV ⊥pn = γ(yn−PV ⊥qn),
and qn ∈ Apn. Therefore, (63) is a particular case of (50) when δn ≡ 1 ∈ ]0, 2(β/γ)[
and the results follow from Theorem 5.2. �

Remark 5.3: Note that, when V = H, (63) reduces to

xn+1 = xn + λn

(

JγA(xn − γBxn)− xn
)

, (65)

which is the forward–backward splitting with constant step size (see [15] and the
references therein).

Remark 5.4: Set an ≡ bn ≡ 0 in Theorem 4.2, set γ ∈ ]0, 2β[ and δn ≡ 1 in
Theorem 5.2, and let (λn)n∈N be a sequence in [ε, 1] for some ε ∈ ]0, 1[. Moreover
denote by (x1n, y

1
n)n∈N the sequence in V × V ⊥ generated by Theorem 4.2 and

by (x2n, y
2
n)n∈N the sequence in V × V ⊥ generated by Theorem 5.2 when x10 =

x20 = x0 ∈ V and y10 = y20 = y0 ∈ V ⊥. Then, for every n ∈ N, x1n = x2n and
y1n = y2n. Indeed, x

1
0 = x20 and y10 = y20 by assumption. Proceeding by mathematical

induction, suppose that x1n = x2n = xn and y1n = y2n = yn. Hence, we deduce from
(37), an ≡ bn ≡ 0, and (63) that

x1n+1 = x1n + λn(PV JγA(x
1
n − γPV Bx1n + γy1n)− x1n)

= x2n + λn(PV JγA(x
2
n − γPV Bx2n + γy2n)− x2n)

= x2n+1. (66)

Moreover, since PV ⊥ = Id−PV , we obtain

y1n+1 = y1n − (λn/γ)PV ⊥JγA(x
1
n − γPV Bx1n + γy1n)

= y2n − (λn/γ)PV ⊥JγA(x
2
n − γPV Bx2n + γy2n)

= y2n+1, (67)

which yields the result. Therefore, both algorithms are the same in this case. How-
ever, even if both methods are very similar, they can be used differently depending
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on the nature of each problem. Indeed, the algorithm proposed in Theorem 4.2 al-
lows for explicit errors in the computation of the operators involved in the general
case and the relaxation parameters (λn)n∈N are allowed to be greater than those
of the method in Theorem 5.2. On the other hand, the method in Theorem 5.2
allows for a dynamic step size δn in the general case, which is not permitted in the
algorithm proposed in Theorem 4.2.

6. Applications

In this section we study two applications of our algorithms. First we study the
problem of finding a zero of the sum of m maximally monotone operators and
a cocoercive operator and, next, we study the variational case. Connections with
other methods in this framework are also provided.

6.1. Inclusion involving the sum of m monotone operators

Let us consider the following problem.

Problem 6.1: Let (H, | · |) be a real Hilbert space, for every i ∈ {1, . . . ,m},
let Ai : H → 2H be a maximally monotone operator, and let B : H → H be a β–
cocoercive operator. The problem is to

find x ∈ H such that 0 ∈

m
∑

i=1

Aix+ Bx, (68)

under the assumption that such a solution exists.

Problem 6.1 has several applications in image processing, principally in the varia-
tional setting (see, e.g., [17, 23] and the references therein), variational inequalities
[44, 45], partial differential equations [33], and economics [28, 35], among others.
In [23, 46] two different methods for solving Problem 6.1 are proposed. In [46]
auxiliary variables are included for solving a more general problem including linear
transformations and additional strongly monotone operators. This generality does
not exploits the intrinsic properties of Problem 6.1 and it restricts the choice of the
parameters involved. On the other hand, the method in [23] takes into advantage
the structure of the problem, but involves restricting relaxation parameters and
errors. We provide an alternative version to the latter method, which allows for
a wider class of errors and relaxation parameters. The method is obtained as a
consequence of Theorem 4.2 and the version obtained from Theorem 5.2 is also
examined.
Let us provide a connection between Problem 6.1 and Problem 1.1 via product

space techniques. Let (ωi)1≤i≤m be real numbers in ]0, 1[ such that
∑m

i=1 ωi = 1,
let H be the real Hilbert space obtained by endowing the Cartesian product Hm

with the scalar product and associated norm respectively defined by

〈· | ·〉 : (x, y) 7→
m
∑

i=1

ωi〈xi | yi〉 and ‖ · ‖ : x 7→

√

√

√

√

m
∑

i=1

ωi|xi|2, (69)
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where x = (xi)1≤i≤m is a generic element of H. Define



















V =
{

x = (xi)1≤i≤m ∈ H | x1 = · · · = xm
}

j : H → V ⊂ H : x 7→ (x, . . . , x)

A : H → 2H : x 7→ 1
ω1

A1x1 × · · · × 1
ωm

Amxm

B : H → H : x 7→ (Bx1, . . . ,Bxm).

(70)

Proposition 6.2: Let H, (Ai)1≤i≤m, and B be as in Problem 6.1, and let V , j,
A, and B be as in (70). Then the following hold.

(i) V is a closed vector subspace of H, PV : (xi)1≤i≤m 7→ j(
∑m

i=1 ωixi), and

NV : H → 2H

x 7→

{

V ⊥ =
{

x = (xi)1≤i≤m ∈ H |
∑m

i=1 ωixi = 0
}

, if x ∈ V ;

∅, otherwise.

(71)

(ii) j : H → V is a bijective isometry and j−1 : (x, . . . , x) 7→ x.
(iii) A is a maximally monotone operator and, for every γ ∈ ]0,+∞[,

JγA : (xi)1≤i≤m 7→ (JγAi/ωi
xi).

(iv) B is β–cocoercive, B(j(x)) = j(Bx), and B(V ) ⊂ V .
(v) For every x ∈ H, x is a solution to Problem 6.1 if and only if j(x) ∈

zer(A+B +NV ).

Proof : (i)&(ii): They follow from (6) and easy computations. (iii): See [6, Propo-
sition 23.16]. (iv): Let x = (xi)1≤i≤m and y = (yi)1≤i≤m be in H. Then, it follows
from (70) and the β–cocoercivity of B that

〈Bx−By |x− y〉 =

m
∑

i=1

ωi〈Bxi−Byi | xi − yi〉 ≥ β

m
∑

i=1

ωi|Bxi − Byi|
2=β‖Bx−By‖2,

(72)
which yields the cocoercivity of B. The other results are clear from the definition.
(v): Let x ∈ H. We have

0 ∈

m
∑

i=1

Aix+ Bx ⇔

(

∃ (yi)1≤i≤m ∈

m

×
i=1

Aix

)

0 =

m
∑

i=1

yi + Bx

⇔

(

∃ (yi)1≤i≤m ∈

m

×
i=1

Aix

)

0 =

m
∑

i=1

ωi(−yi/ωi − Bx)

⇔

(

∃ (yi)1≤i≤m ∈

m

×
i=1

Aix

)

− (y1/ω1, . . . , ym/ωm)− j(Bx) ∈ V ⊥ = NV (j(x))

⇔ 0 ∈ A(j(x)) +B(j(x)) +NV (j(x))

⇔ j(x) ∈ zer(A+B +NV ), (73)
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which yields the result. �

The following algorithm solves Problem 6.1 and is a direct consequence of The-
orem 4.2.

Proposition 6.3: Let γ ∈ ]0, 2β[, let α = max{2/3, 2γ/(γ + 2β)}, let (λn)n∈N
be a sequence in ]0, 1/α[, for every i ∈ {1, . . . ,m}, let (an)n∈N and (bi,n)n∈N be
sequences in H, and suppose that

∑

n∈N

λn(1− αλn) = +∞ and max
1≤i≤m

∑

n∈N

λn

(

|an|+ |bi,n|
)

< +∞. (74)

Moreover let (zi,0)1≤i≤m ∈ Hm and consider the following routine.

(∀n ∈ N)

















xn =
∑m

i=1 ωizi,n
For i = 1, . . . ,m








si,n = 2xn − zi,n − γ(Bxn + an)
pi,n = JγAi/ωi

si,n + bi,n
zi,n+1 = zi,n + λn(pi,n − xn).

(75)

Then, the following hold for some solution x to Problem 6.1.

(i) xn ⇀ x.
(ii) Bxn → Bx.
(iii) xn+1 − xn → 0.

Proof : Set, for every n ∈ N, xn = j(xn), an = j(an), bn = (bi,n)1≤i≤m, yn =
(yi,n)1≤i≤m, zn = (zi,n)1≤i≤m, pn = (pi,n)1≤i≤m, and qn = (qi,n)1≤i≤m. It follows
from Proposition 6.2(i) and (75) that, for every n ∈ N, xn = PV zn. Hence, it follows
from (70) and Proposition 6.2 that (75) can be written equivalently as

(∀n ∈ N)

















xn = PV zn
yn = (xn − zn)/γ
sn = xn − γPV

(

Bxn + an
)

+ γyn
pn = JγAsn + bn
zn+1 = zn + λn(pn − xn).

(76)

Moreover, it follows from (69) that

‖an‖+ ‖bn‖ = |an|+

√

√

√

√

m
∑

i=1

ωi|bi,n|2 ≤ |an|+

m
∑

i=1

|bi,n| (77)

and, hence, (74) yields
∑

n∈N λn(‖an‖+‖bn‖) < +∞. Altogether, Theorem 4.2 and
Proposition 6.2(v) yield the results. �

Remark 6.1:

(i) In the particular case when (λn)n∈N is such that 0 < limλn ≤ lim λn < 1/α
and the errors are summable, the algorithm (75) reduces to the method
in [23]. Condition (74) allows for a larger class of errors and relaxation
parameters.

(ii) Set an ≡ 0, for every i ∈ {1, . . . ,m}, set bi,n ≡ 0, let γ ∈ ]0, 2β[, and
let (λn)n∈N be a sequence in [ε, 1] for some ε ∈ ]0, 1[. Then it follows from
Remark 5.4 that the algorithm in Proposition 6.3 coincides with the routine:
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let x0 ∈ H, let (yi,0)1≤i≤m ∈ Hm such that
∑m

i=1 ωiyi,0 = 0, and set

(∀n ∈ N)

















For i = 1, . . . ,m








si,n = xn − γBxn + γyi,n
pi,n = JγAi/ωi

si,n
yi,n+1 = yi,n + (λn/γ)(

∑m
i=1 ωipi,n − pi,n)

xn+1 = xn + λn(
∑m

i=1 ωipi,n − xn)

(78)

which is the method proposed in Corollary 5.3 applied to Problem 6.1. In
the particular case when B = 0, γ = 1, and λn ≡ 1, (78) reduces to [16,
Corollary 2.6].

(iii) It follows from (38) that, in the case when B = 0, the method proposed in
Proposition 6.3 follows from the iteration

(∀n ∈ N) zn+1 = zn + λn(Tγzn + bn − zn) (79)

where A and V are defined in (70). This method is very similar to the
algorithm proposed in [16, Theorem 2.5]. Indeed the only difference is that
instead of the operator Tγ = (Id+RγARNV

)/2 used in Proposition 6.3, in
[16, Theorem 2.5] is used the operator (Id+RNV

RγA)/2.

Corollary 6.4: Let γ ∈ ]0,+∞[, let (λn)n∈N be a sequence in ]0, 3/2[, for every
i ∈ {1, . . . ,m}, let (bi,n)n∈N be sequences in H, and suppose that

∑

n∈N

λn(3− 2λn) = +∞ and max
1≤i≤m

∑

n∈N

λn|bi,n| < +∞. (80)

Moreover, let (z1,0, z2,0) ∈ H2 and consider the following routine.

(∀n ∈ N)

















xn = (z1,n + z2,n)/2
p1,n = J2γA1

(z2,n) + b1,n
p2,n = J2γA2

(z1,n) + b2,n
z1,n+1 = z1,n + λn(p1,n − xn)
z2,n+1 = z2,n + λn(p2,n − xn).

(81)

Then, the following hold for some solution x ∈ zer(A1 + A2).

(i) xn ⇀ x.
(ii) xn+1 − xn → 0.

Proof : Is a direct consequence of Proposition 6.3 in the particular case when
m = 2, B = 0, α = 2/3, and ω1 = ω2 = 1/2. �

Remark 6.2:

(i) The most popular method for finding a zero of the sum of two maximally
monotone operators is the Douglas–Rachford splitting [31, 43], in which
the resolvents of the operators involved are computed sequentially. In the
case when these resolvents are hard to compute, Corollary 6.4 provides
an alternative method which computes in parallel both resolvents. This
method is different to the parallel algorithm proposed in [10, Corollary 3.4].

(ii) For every i ∈ {1, . . . ,m}, set bi,n ≡ 0 and let (λn)n∈N be a sequence in [ε, 1]
for some ε ∈ ]0, 1[. Then it follows from Remark 5.4 that the algorithm in
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Corollary 6.4 coincides with the routine: let x0 ∈ H, let v0 ∈ H, and set

(∀n ∈ N)





















s1,n = xn + γvn
s2,n = xn − γvn
p1,n = J2γA1

s1,n
p2,n = J2γA2

s2,n
vn+1 = vn + (λn/(2γ))(p2,n − p1,n)
xn+1 = (1− λn)xn + (λn/2)(p1,n + p2,n),

(82)

which is the method proposed in (78) applied to find a zero of A1+A2 when
ω1 = ω2 = 1/2 and y1,n = −y2,n = vn.

6.2. Variational case

We apply the results of the previous sections to minimization problems. Let us
first recall some standard notation and results [6, 47]. We denote by Γ0(H) be
the class of lower semicontinuous convex functions f : H → ]−∞,+∞] such that
dom f =

{

x ∈ H | f(x) < +∞
}

6= ∅. Let f ∈ Γ0(H). The function f + ‖ · −z‖2/2
possesses a unique minimizer, which is denoted by proxf z. Alternatively,

proxf = (Id+∂f)−1 = J∂f , (83)

where ∂f : H → 2H : x 7→
{

u ∈ H | (∀y ∈ H) 〈y − x | u〉+ f(x) ≤ f(y)
}

is the
subdifferential of f , which is a maximally monotone operator. Finally, let C be a
convex subset of H. The indicator function of C is denoted by ιC and its strong
relative interior (the set of points in x ∈ C such that the cone generated by −x+C
is a closed vector subspace of H) by sriC. The following facts will also be required.

Proposition 6.5: Let V be a closed vector subspace of H, let f ∈ Γ0(H) be such
that V ∩dom f 6= ∅, let g : H → R be differentiable and convex. Then the following
hold.

(i) zer(∂f +∇g +NV ) ⊂ Argmin(f + g + ιV ).
(ii) Suppose that one of the following is satisfied.

(a) Argmin(f + g + ιV ) 6= ∅ and 0 ∈ sri(dom f − V ).
(b) Argmin(f + g + ιV ) ⊂ Argmin f ∩Argmin(g + ιV ) 6= ∅.
Then zer(∂f +∇g +NV ) 6= ∅.

Proof : (i): Since dom g = H, it follows from [6, Corollary 16.38(iii)] that ∂(f +
g) = ∂f+∇g. Hence, it follows from V ∩dom f 6= ∅, [6, Proposition 16.5(ii)], and [6,
Theorem 16.2] that zer(∂f+∇g+NV ) = zer(∂(f+g)+NV ) ⊂ zer(∂(f+g+ιV )) =
Argmin(f + g + ιV ).
(ii)(a): Since dom g = H yields dom(f+g) = dom f , sri(dom f−V ) = sri(dom(f+

g) − dom ιV ). Therefore, it follows from Fermat’s rule ([6, Theorem 16.2]) and [6,
Theorem 16.37(i)] that, for every x ∈ H,

∅ 6= Argmin(f + g + ιV ) = zer ∂
(

f + g + ιV
)

= zer
(

∂(f + g) +NV

)

= zer
(

∂f +∇g +NV

)

. (84)

(ii)(b): Using [6, Corollary 16.38(iii)] and (i), from standard convex analysis we
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have

Argmin f ∩Argmin(g + ιV ) = zer ∂f ∩ zer ∂(g + ιV )

= zer ∂f ∩ zer(∇g +NV )

⊂ zer(∂f +∇g +NV )

⊂ Argmin(f + g + ιV ). (85)

Therefore, the hypothesis yields zer(∂f+∇g+NV ) = Argmin f∩Argmin(g+ιV ) 6=
∅. �

The problem under consideration in this section is the following.

Problem 6.6: Let V be a closed vector subspace of H, let f ∈ Γ0(H), and let
g : H → R be a differentiable convex function such that ∇g is β−1–Lipschitzian.
The problem is to

minimize
x∈V

f(x) + g(x). (86)

Problem 6.6 has several applications in partial differential equations [33, Sec-
tion 3], signal and image processing [2, 12, 13, 17, 20, 21], and traffic theory [3, 39]
among other fields.
In the particular case when V = H, Problem 6.6 has been widely studied, the

forward-backward splitting can solve it (see [3, 15] and the references therein), and
several applications to multicomponent image processing can be found in [9] and
[11]. In the case when g ≡ 0, the partial inverse method in [42] solves Problem 6.6
with some applications to convex programming. In the general setting, Problem 6.6
can be solved by methods developed in [10, 17, 23] but without exploiting the struc-
ture of the problem. Indeed, in the algorithms presented in [10, 17] it is necessary
to compute proxg = (Id+∇g)−1 and, hence, they do not exploit the fact that ∇g
is single-valued. In [23] the method proposed computes explicitly ∇g, however, it
generates auxiliary variables for obtaining PV via product space techniques, which
may be numerically costly in problems with a big number of variables. This is
because this method does not exploit the vector subspace properties of V . The fol-
lowing result provides a method which exploit the whole structure of the problem
and it follows from Proposition 5.3 applied to optimization problems.

Proposition 6.7: Let H, V , f , and g be as in Problem 6.6, let γ ∈ ]0, 2β[, let
α = max{2/3, 2γ/(γ + 2β)}, let (λn)n∈N be a sequence in ]0, 1/α[, let (an)n∈N and
(bn)n∈N be sequences in H, and suppose that

∑

n∈N

λn(1− αλn) = +∞ and
∑

n∈N

λn(‖an‖+ ‖bn‖) < +∞ (87)

and that

zer(∂f +∇g +NV ) 6= ∅. (88)
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Moreover let z0 ∈ H and set

(∀n ∈ N)

















xn = PV zn
yn = (xn − zn)/γ
sn = xn − γPV

(

∇g(xn) + an
)

+ γyn
pn = proxγf sn + bn
zn+1 = zn + λn(pn − xn).

(89)

Then, the sequences (xn)n∈N and (yn)n∈N are in V and V ⊥, respectively, and the
following hold for some solution x to Problem 6.6 and some y ∈ V ⊥ ∩

(

∂f(x) +

PV ∇g(x)
)

.

(i) xn ⇀ x and yn ⇀ y.
(ii) xn+1 − xn → 0 and yn+1 − yn → 0.
(iii)

∑

n∈N λn‖PV

(

∇g(xn)−∇g(x)
)

‖2 < +∞.

Proof : It follows from Baillon–Haddad theorem [4] (see also [5]) that ∇g is β–
cocoercive and, in addition, ∂f is maximally monotone. Therefore, the results follow
from Theorem 4.2, Proposition 6.5(i), and (83) by taking A = ∂f and B = ∇g. �

Remark 6.3:

(i) Conditions for assuring condition (88) are provided in Proposition 6.5(ii).
(ii) Set an ≡ 0 and bn ≡ 0, let γ ∈ ]0, 2β[, and let (λn)n∈N be a sequence in [ε, 1]

for some ε ∈ ]0, 1[. Then it follows from Remark 5.4 that the algorithm in
Proposition 6.7 coincides with the routine: let x0 ∈ V , let y0 ∈ V ⊥, and set

(∀n ∈ N)













sn = xn − γPV ∇g(xn) + γyn
pn = proxγf sn
yn+1 = yn + (λn/γ)(PV pn − pn)
xn+1 = xn + λn(PV pn − xn),

(90)

which is the method proposed in Corollary 5.3 applied to Problem 6.6.
(iii) Recently in [19] an algorithm is proposed for solving simultaneously

minimize
x∈H

f(x) + g(x) + h(Lx), (91)

and its dual, where G is a real Hilbert space, h ∈ Γ0(G), and L : H → G
is linear and bounded. In the particular case when G = H, h = ιV , and
L = Id, (91) reduces to Problem 6.6. In this case, the method is different to
(89) and, additionally, it needs a more restrictive condition on the proximity
parameter and the gradient step when the constants involved are equal.

(iv) Consider the problem involving N convex functions

minimize
x∈V

N
∑

i=1

fi(x) + g(x), (92)

where H is a real Hilbert space, V is a closed vector subspace of H, (fi)1≤i≤N

are functions in Γ0(H), and g is convex differentiable with Lipschitz gra-
dient. Under qualification conditions, (92) can be reduced to Problem 6.1
with m = N + 1, for every i ∈ {1, . . . , N}, Ai = ∂fi, AN+1 = NV, and
B = ∇g. Hence, Proposition 6.3 provides an algorithm that solves (92),
which generalizes the method in [23] in this context by allowing a larger
class of relaxation parameters and errors.
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[2] J.-F. Aujol, G. Gilboa, T. Chan, and S. Osher, Structure-texture image decomposition

– Modeling, algorithms, and parameter selection, Int. J. Comput. Vis. 67 (2006), pp.
111–136.

[3] H. Attouch, L.M. Briceño-Arias, and P.L. Combettes, A parallel splitting method for
coupled monotone inclusions, SIAM J. Control Optim. 48 (2010), pp. 3246–3270.

[4] J.-B. Baillon and G. Haddad, Quelques propriétés des opérateurs angle-bornés et n-
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