
SPLIT-DOUGLAS-RACHFORD ALGORITHM FOR COMPOSITE

MONOTONE INCLUSIONS AND SPLIT-ADMM

LUIS M. BRICEÑO-ARIAS & FERNANDO ROLDÁN

Abstract. In this paper we provide a generalization of the Douglas-Rachford splitting
(DRS) and the primal-dual algorithm [24, 55] for solving monotone inclusions in a real

Hilbert space involving a general linear operator. The proposed method allows for primal

and dual non-standard metrics and activates the linear operator separately from the mono-
tone operators appearing in the inclusion. In the simplest case when the linear operator has

full range, it reduces to classical DRS. Moreover, the weak convergence of primal-dual se-

quences to a Kuhn-Tucker point is guaranteed, generalizing the main result in [53]. Inspired
by [34], we also derive a new Split-ADMM (SADMM) by applying our method to the dual

of a convex optimization problem involving a linear operator which can be expressed as the

composition of two linear operators. The proposed SADMM activates one linear operator
implicitly and the other one explicitly, and we recover ADMM when the latter is set as the

identity. Connections and comparisons of our theoretical results with respect to the litera-

ture are provided for the main algorithm and SADMM. The flexibility and efficiency of both
methods is illustrated via a numerical simulations in total variation image restoration and a

sparse minimization problem.

Keywords. ADMM, convex optimization, Douglas–Rachford splitting, fixed point itera-

tions, monotone operator theory, quasinonexpansive operators, splitting algorithms.

1. Introduction

In this paper we focus on a splitting algorithm for solving the following primal-dual monotone
inclusion.

Problem 1.1. Let H and G be real Hilbert spaces, let A : H → 2H and B : G → 2G be maximally
monotone operators, and let L : H → G be a non-zero linear bounded operator. The problem is
to find (x̂, û) ∈ Z, where

Z =
{
(x̂, û) ∈ H × G

∣∣ 0 ∈ Ax̂+ L∗û, 0 ∈ B−1û− Lx̂
}

(1.1)

is assumed to be non-empty.

This problem arises naturally in several problems in partial differential equations coming
from mechanical problems [34, 37, 38], differential inclusions [2, 52], game theory [13], among
other disciplines. The set Z is the collection of Kuhn-Tucker points [3, Problem 26.30], which
is also known as extended solution set (see, e.g., [25] and [30, 53] for the case when L = Id).

It follows from [12, Proposition 2.8] that any solution (x̂, û) to Problem 1.1 satisfies that x̂
is a solution to the primal inclusion

find x ∈ H such that 0 ∈ Ax+ L∗BLx (1.2)

and û is solution to the dual inclusion

find u ∈ G such that 0 ∈ B−1u− LA−1(−L∗u). (1.3)

2010 Mathematics Subject Classification. 47H05, 47H10, 65K05, 65K15, 90C25, 49M29.

1

2 LUIS M. BRICEÑO-ARIAS & FERNANDO ROLDÁN

Conversely, if x̂ is a solution to (1.2) then there exists ũ solution to (1.3) such that (x̂, ũ) ∈ Z
and the dual argument also holds. In the particular case when A = ∂f and B = ∂g∗, for proper
convex lower semicontinuous functions f : H →]−∞,+∞] and g : G →]−∞,+∞], any solution
x̂ to (1.2) is a solution to the primal convex optimization problem

min
x∈H

(
f(x) + g(Lx)

)
, (1.4)

any solution û to (1.3) is a solution to the dual problem

min
u∈G

(
g∗(u) + f∗(−L∗u)

)
, (1.5)

and the converse holds under standard qualification conditions (see, e.g., [12]). Problems (1.4)
and (1.5) model several image processing problems as image restoration and denoising [18, 21,
26, 42, 46, 50], traffic theory [11, 33, 36], among others.

In the case when L = Id, Problem 1.1 is solved by the Douglas-Rachford splitting (DRS)
[41], which is a classical algorithm inspired from a numerical method for solving linear systems
appearing in discretizations of PDEs [27]. Given z0 ∈ H and τ > 0, DRS generates the sequence
(zn)n∈N ⊂ H via the recurrence

(∀n ∈ N) zn+1 = JτB(2JτAzn − zn) + zn − JτAzn, (1.6)

and zn ⇀ ẑ for some ẑ ∈ H such that JτAẑ is a zero of A + B [41, Theorem 1], where we
denote the resolvent of M : H → 2H by JM = (Id+M)−1. Under additional assumptions, such
as weak lower semicontinuity of JτA or maximal monotonicity of A+B, the weak convergence
of the shadow sequence (JτAzn)n∈N to a zero of A+B is guaranteed in [41, Theorem 1]. More
than thirty years later, the weak convergence of the shadow sequence to a solution is proved in
[53] without any further assumption.

In the general case when L ̸= Id, a drawback of DRS is that the maximal monotonicity of
L∗BL is needed in order to ensure the weak convergence of (zn)n∈N and the computation of its
resolvent at each iteration usually leads to sub-iterations, at exception of very particular cases.
Several algorithms in the literature including [4, 5, 6, 12, 14, 55] split the influence of the linear
operator L from the monotone operators, avoiding sub-iterations. In particular, we highlight
the primal-dual splitting (PDS) proposed in [55], which generates a sequence in H× G via the
recurrence

(∀n ∈ N)
⌊

xn+1 = JτA(xn − τL∗vn)
vn+1 = JσB−1(vn + σL(2xn+1 − xn)),

(1.7)

for some initial point (x0, v0) ∈ H × G and strictly positive step-sizes satisfying τσ∥L∥2 < 1.
In the context of convex optimization, it is well known that DRS applied to (1.5) leads to

the alternating direction method of multipliers (ADMM) [34, 35, 37], whose first step needs
sub-iterations in general. This drawback is overcome by the splitting methods proposed in
[4, 5, 6, 14, 19, 40, 44]. In particular, the algorithm proposed in [19] coincides with PDS in
(1.7) in the optimization setting and its convergence is guaranteed if τσ∥L∥2 < 1. In [24], the
convergence of the sequences generated by (1.7) with step-sizes satisfying the limit condition
τσ∥L∥2 = 1 is studied in finite dimensions. This limit case is important because the algorithm
improves its efficiency as the parameters approach the boundary (see Section 5.1), it has the
advantage of tuning only one parameter, and the algorithm reduces to DRS and ADMM when
L = Id and τσ = 1 [19, Section 4.2]. Furthermore, a preconditioned version of (1.7) in the
optimization context is proposed in [47]. In this extension, τ Id and σId are generalized to
strongly monotone self-adjoint linear operators Υ and Σ, respectively, and the convergence is
guaranteed under the condition ∥Σ 1

2LT
1
2 ∥ < 1. A preconditioned version of (1.7) for monotone

inclusions is derived in [23].

SPLIT-DOUGLAS-RACHFORD AND SPLIT-ADMM 3

In this paper we propose and study the following splitting algorithm for solving Problem 1.1,
which is a generalization of DRS when L ̸= Id and of [23, 55].

Algorithm 1.2 (Split-Douglas-Rachford (SDR)). In the context of Problem 1.1, let (x0, u0) ∈
H × G, let Σ: G → G and Υ : H → H be strongly monotone self-adjoint linear operators such
that U = Υ−1 − L∗ΣL is monotone. Consider the recurrence:

(∀n ∈ N)

vn = Σ(Id− JΣ−1B)(Lxn +Σ−1un)
zn = xn − ΥL∗vn
xn+1 = JΥAzn
un+1 = ΣL(xn+1 − xn) + vn.

(1.8)

Note that Algorithm 1.2 splits the influence of the linear operator from the monotone oper-
ators and, by storing (Lxn)n∈N, only one activation of L is needed at each iteration. Moreover,
in the case when ranL = G, we prove in Proposition 3.5 that (1.8) reduces to a preconditioned
version of DRS in (1.6), in which case JΥL∗BL has a closed formula depending on the resolvent
of B. Other preconditioned versions of DRS are used for solving structured convex optimization
problems in [6, 8, 10, 57], but they do not reduce to DRS when L = Id. Without any further
assumptions than those in Problem 1.1, we guarantee the weak convergence of the sequence(
(xn, un)

)
n∈N generated by Algorithm 1.2 to a point in Z, generalizing the result in [53] to

the case when L ̸= Id. In the particular case when ∥Σ 1
2LT

1
2 ∥ < 1, we obtain a reduction of

Algorithm 1.2 to the preconditioned PDS in [47] and, when ∥Σ 1
2LT

1
2 ∥ = 1, we generalize [24,

Theorem 3.3] to monotone inclusions and infinite dimensions considering non-standard metrics.
We also provide a numerical comparison of Algorithm 1.2 with several methods available in the
literature in a total variation image reconstruction problem.

Another contribution of this manuscript is a generalization of ADMM in the convex opti-
mization context, by applying Algorithm 1.2 to the dual problem of (1.4) when L = KT , for
some non-trivial linear operators T and K. This splitting, called Split-ADMM (SADMM),
allows us to solve (1.4) by activating T implicitly and K explicitly. SADMM reduces to the
classical ADMM in the case when K = Id, Σ = σId, and Υ = τ Id and, in the case when
T = Id, it is a fully explicit algorithm which splits the influence of the linear operator in
the first step of ADMM. We prove the weak convergence of SADMM, generalizing results in
[28, 34, 35]. We also prove the equivalence between SDR and SADMM, generalizing some re-
sults in [1, 28, 34, 35, 45] to the case when L ̸= Id. In addition, we provide a version of SADMM
able to deal with two linear operators as in [9]. The resulting method is a non-standard metric
version of several ADMM-type algorithms in [4, 9, 51, 58] and it can be seen as an augmented
Lagrangian method with a non-standard metric. We also illustrate the efficiency of SADMM by
comparing its numerical performance in an academical sparse minimization example in which
the matrix L be factorized as L = KT from its singular value decomposition (SVD). We show
that the computational time may be drastically reduced by using SADMM with a suitable
factorization of L.

The paper is organized as follows. In Section 2 we set our notation. In Section 3 we provide
the proof of convergence of SDR and we connect our results with the literature. In Section 4
we derive the SADMM, we provide several theoretical results, and we compare them with
the literature in convex optimization. Finally, in Section 5 we provide numerical simulations
illustrating the efficiency of SDR and SADMM.

2. Notations and Preliminaries

Throughout this paper H and G are real Hilbert spaces with the scalar product ⟨· | ·⟩ and
associated norm ∥ · ∥. The identity operator on H is denoted by Id. Given a linear bounded
operator L : H → G, we denote its adjoint by L∗ : G → H, its kernel by kerL, and its range by

4 LUIS M. BRICEÑO-ARIAS & FERNANDO ROLDÁN

ranL. The symbols ⇀ and→ denote the weak and strong convergence, respectively. LetD ⊂ H
be non-empty and let T : D → H. The set of fixed points of T is FixT =

{
x ∈ D

∣∣ x = Tx
}
.

Let β ∈]0,+∞[. The operator T is β−strongly monotone if, for every x and y in D, we
have ⟨x− y | Tx− Ty⟩ ≥ β∥x − y∥2, it is nonexpansive if, for every x and y in D, we have
∥Tx− Ty∥ ≤ ∥x− y∥, it is firmly nonexpansive if

(∀x ∈ D)(∀y ∈ D) ∥Tx− Ty∥2 ≤ ∥x− y∥2 − ∥(Id− T)x− (Id− T)y∥2, (2.1)

and it is firmly quasinonexpansive if, for every x ∈ D and y ∈ FixT , we have ∥Tx − y∥2 ≤
∥x − y∥2 − ∥Tx − x∥2. Let A : H → 2H be a set-valued operator. The inverse of A is
A−1 : u 7→

{
x ∈ H

∣∣ u ∈ Ax
}
. The domain, range, graph, and zeros of A are dom A ={

x ∈ H
∣∣ Ax ̸= ∅

}
, ran A =

{
u ∈ H

∣∣ (∃x ∈ H) u ∈ Ax
}
, graA =

{
(x, u) ∈ H ×H

∣∣ u ∈ Ax
}
,

and zerA =
{
x ∈ H

∣∣ 0 ∈ Ax
}
, respectively. The operator A is monotone if, for every (x, u) and

(y, v) in graA, we have ⟨x− y | u− v⟩ ≥ 0 and A is maximally monotone if it is monotone and
its graph is maximal in the sense of inclusions among the graphs of monotone operators. The
resolvent of a maximally monotone operator A is JA = (Id+A)−1, which is firmly nonexpansive
and satisfies FixJA = zerA.

For every self-adjoint monotone linear operator U : H → H, we define ∥ · ∥U =
√
⟨· | ·⟩U ,

where ⟨· | ·⟩U : (x, y) → ⟨x | Uy⟩ is bilinear, positive semi-definite, symmetric. For every x and
y in H, we have

∥x− y∥2U = ∥x∥2U − 2⟨x | y⟩U + ∥y∥2U . (2.2)

We denote by Γ0(H) the class of proper lower semicontinuous convex functions f : H →
]−∞,+∞]. Let f ∈ Γ0(H). The Fenchel conjugate of f is defined by f∗ : u 7→ supx∈H(⟨x | u⟩−
f(x)), f∗ ∈ Γ0(H), the subdifferential of f is the maximally monotone operator ∂f : x 7→{
u ∈ H

∣∣ (∀y ∈ H) f(x) + ⟨y − x | u⟩ ≤ f(y)
}
, (∂f)−1 = ∂f∗, and we have that zer ∂f is the

set of minimizers of f , which is denoted by argminx∈H f . Given a strongly monotone self-
adjoint linear operator Υ : H → H, we denote by

proxΥf : x 7→ argmin
y∈H

(
f(y) +

1

2
∥x− y∥2Υ

)
, (2.3)

and by proxf = proxIdf . We have proxΥf = JΥ−1∂f [3, Proposition 24.24(i)] and it is single

valued since the objective function in (2.3) is strongly convex. Moreover, it follows from [3,
Proposition 24.24] that

proxΥf = Id− Υ−1 proxΥ
−1

f∗ Υ = Υ−1 (Id− proxΥ
−1

f∗)Υ. (2.4)

Given a non-empty closed convex set C ⊂ H, we denote by PC the projection onto C, by
ιC ∈ Γ0(H) the indicator function of C, which takes the value 0 in C and +∞ otherwise, we
denote by NC = ∂ιC the normal cone to C, and by sriC its strong relative interior. For further
properties of monotone operators, nonexpansive mappings, and convex analysis, the reader is
referred to [3].

We finish this section with a result involving monotone linear operators, which is useful for
the connection of our algorithm and [47].

Proposition 2.1. Let H and G be real Hilbert spaces, let Υ : H → H and Σ: G → G be strongly
monotone self-adjoint linear operators, and set

V : H⊕ G → H⊕ G : (x, u) 7→ (Υ−1x− L∗u,Σ−1u− Lx). (2.5)

Then, the following statements are equivalent.

(1) Υ−1 − L∗ ◦ Σ ◦ L is monotone.

(2) ∥Σ 1
2 ◦ L ◦ Υ 1

2 ∥ ≤ 1.

(3) ∥Υ 1
2 ◦ L∗ ◦ Σ 1

2 ∥ ≤ 1.

SPLIT-DOUGLAS-RACHFORD AND SPLIT-ADMM 5

(4) Σ−1 − L ◦ Υ ◦ L∗ is monotone.
(5) For every (x, u) ∈ H × G,

⟨(x, u) | V (x, u)⟩ ≥ max
{
∥Υ−1u− L∗x∥2Υ , ∥Σ−1u− Lx∥2Σ

}
. (2.6)

Moreover, if any of the statements above holds, V is τσ
τ+σ−cocoercive, where τ > 0 and σ > 0

are the strong monotonicity constants of Υ and Σ, respectively.

Proof. 1⇔2: Since Σ and Υ are strongly monotone, linear, and self-adjoint, it follows from [48,

Theorem p. 265] that there exists strongly monotone, linear, self-adjoint operators Σ
1
2 and Υ

1
2

such that Σ = Σ
1
2 ◦ Σ 1

2 and Υ = Υ
1
2 ◦ Υ 1

2 . Moreover, Υ , Σ, Υ
1
2 , and Σ

1
2 are invertible. Hence,

we have

(∀x ∈ H)
〈
(Υ−1 − L∗ ◦ Σ ◦ L)x | x

〉
= ∥Υ− 1

2x∥2 − ∥Σ 1
2Lx∥2

= ∥Υ− 1
2x∥2

(
1− ∥Σ 1

2LΥ
1
2Υ− 1

2x∥2

∥Υ− 1
2x∥2

)
. (2.7)

Therefore, since Υ− 1
2 is a bijection, by denoting y = Υ− 1

2x, 1 yields

∥Σ 1
2 ◦ L ◦ Υ 1

2 ∥ = sup
y∈H

∥Σ 1
2LΥ

1
2 y∥

∥y∥
≤ 1. (2.8)

The converse clearly holds by using the norm inequality in the right hand side of (2.7). 2⇔3:

Clear from (Σ
1
2 ◦L ◦ Υ 1

2)∗ = Υ
1
2 ◦L∗ ◦Σ 1

2 . 3⇔4: It follows from 1⇔2 replacing Σ by Υ and L
by L∗, respectively. 1⇔5: For every (x, u) ∈ H × G,

⟨(x, u) | V (x, u)⟩ =
〈
x | Υ−1x− L∗u

〉
+
〈
u | Σ−1u− Lx

〉
=
〈
x | (Υ−1 − L∗ΣL)x

〉
+ ⟨ΣLx− u | Lx⟩+

〈
u | Σ−1u− Lx

〉
=
〈
x | (Υ−1 − L∗ΣL)x

〉
+ ∥Σ−1u− Lx∥2Σ (2.9)

and, by symmetry, we analogously obtain

⟨(x, u) | V (x, u)⟩ =
〈
u | (Σ−1 − LΥL∗)u

〉
+ ∥Υ−1x− L∗u∥2Υ . (2.10)

Hence, it follows from 1 and (2.9) that ⟨(x, u) | V (x, u)⟩ ≥ ∥Σ−1u−Lx∥2Σ. Since 1 is equivalent
to 4, (2.10) yields ⟨(x, u) | V (x, u)⟩ ≥ ∥Υ−1x − L∗u∥2Υ and we obtain (2.6). For the converse
implication it is enough to combine (2.9) with (2.6).

For the last assertion, note that (2.6) implies, for every (x, u) ∈ H × G,{
⟨(x, u) | V (x, u)⟩ ≥ τ∥Υ−1x− L∗u∥2

⟨(x, u) | V (x, u)⟩ ≥ σ∥Σ−1u− Lx∥2.
(2.11)

By multiplying the first equation in (2.11) by λ ∈ [0, 1] and the second by (1−λ) and summing
up we obtain

⟨(x, u) | V (x, u)⟩ ≥ λτ∥Υ−1x− L∗u∥2 + (1− λ)σ∥Σ−1u− Lx∥2

≥ min{λτ, (1− λ)σ}∥V (x, u)∥2. (2.12)

The result follows by noting that λ 7→ min{λτ, (1− λ)σ} is maximized at λ∗ = σ/(τ + σ). □

6 LUIS M. BRICEÑO-ARIAS & FERNANDO ROLDÁN

3. Convergence of Algorithm 1.2

Denote by M : H⊕ G → 2H⊕G the maximally monotone operator [12, Proposition 2.7]

M : (x, u) 7→ (Ax+ L∗u)× (B−1u− Lx). (3.1)

For every strongly monotone self-adjoint linear operators Υ : H → H and Σ: G → G, consider
the real Hilbert space H obtained by endowing H × G with the inner product ⟨· | ·⟩U , where
U : (x, u) 7→ (Υ−1x,Σ−1u). More precisely,

⟨· | ·⟩U :
(
(x, u), (y, v)

)
7→
〈
x | Υ−1y

〉
+
〈
u | Σ−1v

〉
, (3.2)

and we denote the associated norm by ∥ · ∥U =
√
⟨· | ·⟩U . Observe that, since Υ and Σ are

strongly monotone, the topologies of H and H⊕ G are equivalent.

Proposition 3.1. In the context of Problem 1.1, let Σ: G → G and Υ : H → H be strongly
monotone self-adjoint linear operators such that U = Υ−1 − L∗ΣL is monotone, and define
T : H → H by

T :

(
x
u

)
7→
(
x+

u+

)
=

(
JΥA

(
x− ΥL∗Σ(Id− JΣ−1B)(Lx+Σ−1u)

)
ΣL(x+ − x) + Σ(Id− JΣ−1B)(Lx+Σ−1u)

)
. (3.3)

Then, the following hold:

(1) For every (x, u) ∈ H, we have(
Υ−1(x− x+),Σ

−1(u− u+)
)
∈ M

(
x+, u+ − ΣL(x+ − x)

)
. (3.4)

(2) FixT = Z = zerM .
(3) For every (x̂, û) ∈ Z and (x, u) ∈ H we have

∥T (x, u)− (x̂, û)∥2U ≤ ∥(x, u)− (x̂, û)∥2U − ∥(x, u)− T (x, u)∥2U
+ 2⟨u+ − u | L(x+ − x)⟩. (3.5)

Proof. 1: From (3.3) and [3, Proposition 23.34(iii)] we obtain(
x+

u+

)
= T

(
x
u

)
⇔

{
x+ = JΥA

(
x− ΥL∗Σ(Id− JΣ−1B)(Lx+Σ−1u)

)
u+ = ΣL(x+ − x) + Σ(Id− JΣ−1B)(Lx+Σ−1u)

⇔

{
x+ = JΥA

(
x− ΥL∗(u+ − ΣL(x+ − x))

)
u+ − ΣL(x+ − x) = JΣB−1(ΣLx+ u)

⇔

{
Υ−1(x− x+)− L∗(u+ − ΣL(x+ − x)) ∈ Ax+

Σ−1(u− u+) + Lx+ ∈ B−1
(
u+ − ΣL(x+ − x)

)
,

(3.6)

and the result follows from (3.1). 2: It follows from 1 and (1.1) that T (x̂, û) = (x̂, û) ⇔
(0, 0) ∈ M(x̂, û) ⇔ (x̂, û) ∈ Z. 3: Let (x̂, û) ∈ Z. It follows from 2 that (0, 0) ∈ M(x̂, û).
Hence, 1 and the monotonicity of M in H⊕ G yield

0 ≤
〈
Υ−1(x− x+) | x+ − x̂

〉
+
〈
Σ−1(u− u+) | u+ − û+ΣL(x− x+)

〉
(3.2)
= ⟨(x, u)− (x+, u+) | (x+, u+)− (x̂, û)⟩U + ⟨u− u+ | L(x− x+)⟩

(2.2)
=

1

2

(
∥(x, u)− (x̂, û)∥2U − ∥(x, u)− (x+, u+)∥2U − ∥(x+, u+)− (x̂, û)∥2U

)
+ ⟨u− u+ | L(x− x+)⟩

and the result follows. □

SPLIT-DOUGLAS-RACHFORD AND SPLIT-ADMM 7

Remark 3.2. (1) Note that (3.3) and Algorithm 1.2 yield, for every n ∈ N, (xn+1, un+1) =
(xn+, un+) = T (xn, un). This observation and the properties of T in Proposition 3.1
are crucial for the convergence of Algorithm 1.2 in Theorem 3.3 below.

(2) Proposition 3.1(3) can be written equivalently as, for every (x̂, û) ∈ Z and (x, u) ∈ H,
∥T (x, u) − (x̂, û)∥2U ≤ ∥(x, u) − (x̂, û)∥2U − ∥(x, u) − T (x, u)∥2V , where V : (x, u) 7→
(Υ−1x−L∗u,Σ−1u−Lx). Since Υ−1−L∗ΣL is monotone, Proposition 2.1 asserts that
V is self-adjoint, linear, and cocoercive, but not strongly monotone and, thus, ∥ · ∥2V
does not define a norm.

Theorem 3.3. In the context of Problem 1.1, let (x0, u0) ∈ H × G and consider the sequence(
(xn, un)

)
n∈N defined by the Algorithm 1.2. Then, the following assertions hold:

(1)
∑

n≥1 ∥xn+1 − xn∥2 < +∞ and
∑

n≥1 ∥un+1 − un∥2 < +∞.

(2) There exists (x̂, û) ∈ Z such that (xn, un) ⇀ (x̂, û) in H⊕ G.

Proof. Let x = (x, u) ∈ FixT , for every n ∈ N, denote by xn = (xn, un), and fix n ≥ 1.
It follows from Remark 3.2(1) that xn+1 = Txn and from Proposition 3.1(2) that x ∈ Z.
Therefore, Proposition 3.1(3) yields

∥xn+1 − x∥2U ≤ ∥xn − x∥2U − ∥xn − xn+1∥2U + 2⟨un+1 − un | L(xn+1 − xn)⟩. (3.7)

Hence, we deduce from the firm non-expansiveness of JΥA in (H, ⟨· | ·⟩Υ−1) [3, Proposition 23.34(i)]
and the monotonicity of U = Υ−1 − L∗ΣL that

⟨un+1 − un | L(xn+1 − xn)⟩
(1.8)
= ⟨ΣL(xn+1 − xn) + vn − ΣL(xn − xn−1)− vn−1 | L(xn+1 − xn)⟩
= ⟨xn+1 − xn | L∗ΣL(xn+1 − xn)⟩+ ⟨L∗(vn − vn−1) | xn+1 − xn⟩

− ⟨ΣL(xn − xn−1) | L(xn+1 − xn)⟩
= ⟨xn+1 − xn | L∗ΣL(xn+1 − xn)⟩+

〈
Υ−1(xn − xn−1) | xn+1 − xn

〉
− ⟨(xn − ΥL∗vn − (xn−1 − ΥL∗vn−1)) | xn+1 − xn⟩Υ−1

− ⟨ΣL(xn − xn−1) | L(xn+1 − xn)⟩
≤ ⟨xn+1 − xn | L∗ΣL(xn+1 − xn)⟩+

〈
Υ−1(xn − xn−1) | xn+1 − xn

〉
− ∥xn+1 − xn∥2Υ−1 − ⟨L∗ΣL(xn − xn−1) | xn+1 − xn⟩

= −∥xn+1 − xn∥2U + ⟨xn − xn−1 | xn+1 − xn⟩U
(2.2)
= −1

2
∥xn+1 − xn∥2U +

1

2
∥xn − xn−1∥2U − 1

2
∥xn+1 + xn−1 − 2xn∥2U

≤ −1

2
∥xn+1 − xn∥2U +

1

2
∥xn − xn−1∥2U . (3.8)

Therefore, it follows from (3.7) that

(∀n ≥ 1) ∥xn+1 − x∥2U + ∥xn+1 − xn∥2U ≤ ∥xn − x∥2U + ∥xn − xn−1∥2U
− ∥xn − xn+1∥2U . (3.9)

Thus, [22, Lemma 3.1] asserts that

(∀x ∈ Z)
(
∥xn − x∥2U + ∥xn − xn−1∥2U

)
n≥1

converges, (3.10)

that ∑
n≥1

∥xn+1 − xn∥2U < +∞, (3.11)

8 LUIS M. BRICEÑO-ARIAS & FERNANDO ROLDÁN

and 1 follows from (3.2) and the strong monotonicity of Υ−1 and Σ−1 [48, p.266].
In order to prove 2, note that, from 1 and the uniform continuity of U , we deduce ∥xn −

xn−1∥2U → 0. Hence, (3.10) implies that, for every x ∈ Z, (∥xn − x∥2U)n∈N converges. Now,
let (x, u) ∈ H be a weak sequential cluster point of

(
(xn, un)

)
n∈N, say (xkn , ukn) ⇀ (x, u) in

H. It is clear from (3.2) that we have xkn ⇀ x in H and ukn ⇀ u in G and from 1 that
xkn+1 ⇀ x and ukn+1 ⇀ u. Hence, since Proposition 3.1(1) yields(

Υ−1(xkn
− xkn+1),Σ

−1(ukn
− ukn+1)

)
∈ M

(
xkn+1, ukn+1 − ΣL(xkn+1 − xkn

)
)
, (3.12)

we deduce from 1, the uniform continuity of ΣL, Υ−1, and Σ−1, and [3, Proposition 20.38(ii)],
that (0, 0) ∈ M(x, u). Therefore, we conclude from [3, Lemma 2.47] that there exists x̂ ∈ FixT
such that xn ⇀ x̂ and the result follows from the equivalence of the topologies of H and
H⊕ G. □

Remark 3.4. (1) In the proof of Theorem 3.3, we can also deduce that any weak accu-
mulation point of ((xn, un))n∈N is in Z by using the points in the graph of A and B
obtained from (3.6) and [3, Proposition 26.5(i)].

(2) The method can include summable errors in the computation of resolvents and linear
operators, by using standard Quasi-Féjer sequences. We prefer to not include this
extension for simplicity of our algorithm formulation.

(3) Consider the sequences (vn)n∈N, (zn)n∈N, (xn)n∈N, (un)n∈N defined by Algorithm 1.2
with starting point (x0, u0) ∈ H×G. It follows from (1.8) and [3, Proposition 23.34(iii)]
that, for every n ∈ N,

vn+1 = Σ(Id− JΣ−1B)(Lxn+1 +Σ−1un+1)

= JΣB−1(ΣLxn+1 + un+1)

= JΣB−1(vn +ΣL(2xn+1 − xn)),

leading to

(∀n ∈ N)
⌊

xn+1 = JΥA(xn − ΥL∗vn)
vn+1 = JΣB−1(vn +ΣL(2xn+1 − xn)),

(3.13)

with starting point (x0,Σ(Id−JΣ−1B)(Lx0+Σ−1u0)) ∈ H×G. When ∥Σ 1
2 ◦L◦Υ 1

2 ∥ < 1,
(3.13) is equivalent to the proximal point algorithm applied to V −1M in (H×G, ⟨· | ·⟩V),
where V : (x, u) 7→ (Υ−1x − L∗u,Σ−1u − Lx) is strongly monotone in view of [47,
Lemma 1]. Moreover, when Υ = τ Id, Σ = σId, and στ∥L∥2 < 1, (3.13) coincides with
the PDS in (1.7) [19, 24, 40, 55]. As stated in Remark 3.2, under our assumptions V
is no longer strongly monotone and the same approach cannot be used. On the other
hand, a generalization of the previous approach is provided in [55] using the forward-
backward splitting in order to allow cocoercive operators in the monotone inclusion
when V is strongly monotone. In the optimization context, the inclusion of cocoercive
operators allows for convex differentiable functions with β−1−Lipschitz gradients in the
objective function and the convergence results are guaranteed under the more restrictive
assumption στ∥L∥2 < 1 − τ/2β [24, Theorem 3.1]. Hence, the inclusion of cocoercive
operators modifies our monotonicity assumption on U in Algorithm 1.2 distancing us
from our main results. This leads us to consider this extension as part of further
research.

(4) We deduce from (3.13) and (1.8) that the primal iterates of SDR coincide with those of
PDS in (3.13) and SDR includes an additional inertial step in the dual updates, more
precisely,

(∀n ∈ N) un+1 = ΣL(xn+1 − xn) + vn. (3.14)

SPLIT-DOUGLAS-RACHFORD AND SPLIT-ADMM 9

Hence, it follows from Theorem 3.3(1)&(2) and the uniform continuity of ΣL that
vn ⇀ û. As a consequence, we obtain the primal-dual weak convergence of (3.13)

when ∥Σ 1
2 ◦ L ◦ Υ 1

2 ∥ ≤ 1, which generalizes [47, Theorem 1] and [24, Theorem 3.3], in
the case when Σ = σId and Υ = τ Id, to monotone inclusions and infinite dimensions.

(5) By using product space techniques, Algorithm 1.2 allows us to solve

find x̂ ∈ H such that 0 ∈ Ax̂+

m∑
i=1

L∗
iBiLix̂, (3.15)

where, for every i ∈ {1, . . . ,m}, Gi is a real Hilbert space, A : H → 2H and Bi : Gi → 2Gi

are maximally monotone, and Li : H → Gi is a linear bounded operator. Indeed, by
setting G = ⊕1≤i≤mGi, B : (ui)1≤i≤m 7→ ×m

i=1Biui, and L : x 7→ (Lix)1≤i≤m, (3.15) is
equivalent to (1.2). Hence, by setting Σ: (ui)1≤i≤m 7→ (Σiui)1≤i≤m, where (Σi)1≤i≤m

are strongly monotone operators, previous remark allows us to write Algorithm 1.2 as

(∀n ∈ N)

xn+1 = JΥA(xn − Υ

∑m
i=1 L

∗
i vi,n)

v1,n+1 = JΣ1B
−1
1

(v1,n +Σ1L1(2xn+1 − xn))
...

vm,n+1 = JΣmB−1
m

(vm,n +Σ1Lm(2xn+1 − xn)),

(3.16)

and the weak convergence of (xn)n∈N to a solution to (3.15) is guaranteed by Theo-
rem 3.3, assuming that

Υ−1 −
m∑
i=1

L∗
iΣiLi is monotone. (3.17)

Note that (3.16) has the same structure as the algorithm in [23, Corollary 6.2] without
considering cocoercive operators or relaxation steps, but the convergence is guaranteed
under the weaker assumption (3.17).

(6) Suppose that ranL∗ = H and that Υ = (L∗ΣL)−1. Then, U = Υ−1 − L∗ΣL = 0 and
the operator T defined in (3.3) is firmly quasinonexpansive in H, in view of Propo-
sition 3.1(3) and (3.9). We thus generalize [53, Corollary 3]. Observe that, in the
particular case when L = Id, we have Υ = Σ−1 and the operator T defined in (3.3)
reduces to T : (x, u) 7→ ΦΥ

A(JΥB(x+ Υu)− Υu), where

ΦΥ
A : H 7→ H×H : z 7→ (JΥAz, Υ

−1(JΥA − Id)z). (3.18)

In the case when Υ = τ Id, we recover the operator in [15, Proposition 5.18], which is
inspired by [53]. Moreover, note that the inner product ⟨· | ·⟩U defined in (3.2) coincides
with that in [53] (up to a multiplicative constant). Altogether, Theorem 3.3 generalizes
[53] for an arbitrary operator L and non-standard metrics. It also generalizes [34, The-
orem 5.1] from variational inequalities to arbitrary monotone inclusions and it provides
the weak convergence of shadow sequences (JτAzn)n∈N (not guaranteed in [34]).

(7) Note that, by storing (Lxn)n∈N, Algorithm 1.2 only needs to compute L once at each
iteration. This observation is important in high dimensional problems in which the
computation of L is numerically expensive.

The following result establishes the reduction of Algorithm 1.2 to Douglas-Rachford splitting
[29, 41] in the case when ranL = G.

Proposition 3.5. In the context of Problem 1.1, assume ranL = G and set Σ = (LΥL∗)−1.
Then, Algorithm 1.2 with starting point (x0, u0) ∈ H × G reduces to the recurrence

(∀n ∈ N) zn+1 = JΥL∗BL(2JΥAzn − zn) + zn − JΥAzn, (3.19)

10 LUIS M. BRICEÑO-ARIAS & FERNANDO ROLDÁN

where z0 = x0 − ΥL∗Σ(Id− JΣ−1B)(Lx0 +Σ−1u0).

Proof. Note that ranL = G yields, for every u ∈ G, ⟨LΥL∗u | u⟩ ≥ τ∥L∗u∥2 ≥ τα2∥u∥2, where
τ > 0 is the strong monotonicity parameter of Υ and the existence of α > 0 is guaranteed by
[3, Fact 2.26]. Moreover, it follows from [3, Proposition 23.34(iii)&(ii)] that, for every n ∈ N,

vn+1
(1.8)
= Σ(Id− JΣ−1B)(Lxn+1 +Σ−1un+1)

= (Σ−1 +B−1)−1(Lxn+1 +Σ−1un+1)

(1.8)
= (Σ−1 +B−1)−1(L(2xn+1 − xn) + Σ−1vn)

= (LΥL∗ +B−1)−1L(2xn+1 − xn + ΥL∗vn), (3.20)

where the last equality follows from Σ−1 = LΥL∗. On the other hand, [3, Proposition 23.34(iii)]
yields

JΥL∗BL = Υ
1
2 J

Υ
1
2 L∗BLΥ

1
2
Υ− 1

2

= Υ
1
2 (Id− Υ

1
2L∗(LΥL∗ +B−1)−1LΥ

1
2)Υ− 1

2

= Id− ΥL∗(LΥL∗ +B−1)−1L, (3.21)

where the second equality follows from [3, Proposition 23.25(ii)] since (LΥ
1
2)(LΥ

1
2)∗ = LΥL∗

is invertible. Hence, we have

zn+1
(1.8)
= xn+1 − ΥL∗vn+1

(3.20)
= xn+1 − ΥL∗(LΥL∗ +B−1)−1L(2xn+1 − xn + ΥL∗vn)

(1.8)
=
(
Id− ΥL∗(LΥL∗ +B−1)−1L

)
(2JΥA − Id)zn + (Id− JΥA)zn

(3.21)
= JΥL∗BL(2JΥA − Id)zn + (Id− JΥA)zn

and z0 is obtained from (1.8). □

Remark 3.6. Note that Σ = (LΥL∗)−1 is equivalent to Σ−1 − LΥL∗ = 0 and, hence, Υ−1 −
L∗ΣL is monotone in view of Proposition 2.1. Therefore, Proposition 3.5 and Theorem 3.3
provide the weak convergence of the non-standard metric version of DRS in (3.19) when ranL =
G. This also extends the convergence result in [53].

4. Split ADMM

In this section we study the numerical approximation of the following convex optimization
problem.

Problem 4.1. Let H, G, and K be real Hilbert spaces. Let g ∈ Γ0(K), let f ∈ Γ0(H), and let
T : K → G and K : G → H be non-zero bounded linear operators such that ranT ∗∩dom g∗ ̸= ∅.
Consider the following optimization problem

min
y∈K

(
g(y) + f(KTy)

)
(P)

together with the associated Fenchel-Rockafellar dual

min
x∈H

(
f∗(x) + g∗(−T ∗K∗x)

)
. (D)

Moreover, consider the following Fenchel-Rockafellar dual problem associated to (D)

min
u∈G

(
(g∗ ◦ −T ∗)∗(u) + f(−Ku)

)
. (P ∗)

SPLIT-DOUGLAS-RACHFORD AND SPLIT-ADMM 11

We denote by SP , SD, and SP∗ the set of solutions to (P), (D), and (P ∗), respectively.

In the particular case when K = Id, Problem 4.1 is also considered in [28, 34, 54, 56] and
ADMM is derived in [34] by applying DRS to the first order optimality conditions of (D), with
A = ∂f∗ and B = ∂(g∗ ◦ (−T ∗K∗)). We generalize this procedure by applying Algorithm 1.2
to (D) with A = ∂f∗, B = ∂(g∗ ◦ (−T ∗)), and L = K∗. We thus obtain the Split-ADMM
(SADMM), which splits K from T . We now provide an example in which this new formulation
is relevant.

Example 4.2. Let A and M be n ×N and m ×N real matrices, respectively, let b ∈ Rn, let
ϕ ∈ Γ0(Rm), let h ∈ Γ0(Rn), and consider the optimization problem

min
y∈RN

h(Ay − b) + ϕ(My). (4.1)

This problem arises in image and signal restoration and denoising [18, 21, 26, 42, 46, 50].
If M is symmetric and positive definite, as in graph Laplacian regularization (see, e.g., [42,
Section II.B] and [46, 50] for alternative regularizations), there exist P unitary and D diagonal
such that M = PDP⊤. Therefore, by setting η ∈]0, 1[, K = PDηP⊤, T = PD1−ηP⊤, g = ϕ,
and f = h(A · −b), (4.1) is a particular instance of (P). In some instances, the resolvent
computation of ∂(g∗ ◦ −T ∗) is simpler to solve than that of ∂(g∗ ◦ −T ∗K∗) when η ∼ 1, since
D1−η ∼ Id. The numerical advantage of this approach is illustrated in an academical example
in Section 5.2.

Other potential applications arise naturally when y = Φz, where z denotes frequencies or
wavelet coefficients of an image y and Φ is a frame or unitary linear operator allowing to pass
from frequencies to images. Therefore, (4.1) is a particular case of (P) when f = h(· − b),
g = ϕ ◦M ◦ Φ, K = A, and T = Φ. The properties of T in this case also make preferable to
split T from K.

First we provide some existence results and connections between problems (P), (D), and
(P ∗).

Proposition 4.3. In the context of Problem 4.1, consider the inclusion

find (x̂, û) ∈ H × G such that

{
0 ∈ ∂f∗(x̂) +Kû

0 ∈ ∂(g∗ ◦ −T ∗)∗(û)−K∗x̂.
(4.2)

(1) Suppose that there exists ŷ ∈ SP and that one of the following assertions hold:
(a) 0 ∈ ∂g(ŷ) + T ∗K∗∂f(KTŷ).
(b) 0 ∈ sri (dom f −KTdom g).
Then, there exists x̂ ∈ SD such that (x̂,−T ŷ) is a solution to (4.2).

(2) Suppose that there exists x̂ ∈ SD and that one of the following assertions hold:
(a) 0 ∈ ∂f∗(x̂)−KT∂g∗(−T ∗K∗x̂).
(b) 0 ∈ sri (dom g∗ − T ∗K∗dom f∗).
(c) 0 ∈ sri (dom (g∗ ◦ −T ∗)−K∗dom f∗) and 0 ∈ sri (dom g∗ − ran T ∗).
Then, there exists ŷ ∈ SP such that (x̂,−T ŷ) is a solution to (4.2).

(3) Suppose that there exists (x̂, û) solution to (4.2) and that 0 ∈ sri (dom g∗ − ranT ∗).
Then, (x̂, û) ∈ SD × SP∗ and there exists ŷ ∈ SP such that û = −T ŷ.

Proof. 1a: Let x̂ ∈ ∂f(KTŷ) be such that 0 ∈ ∂g(ŷ) + T ∗K∗x̂. Hence, it follows from [3,
Corollary 16.30] that {

0 ∈ ∂f∗(x̂)−KTŷ

0 ∈ ∂g(ŷ) + T ∗K∗x̂,
(4.3)

12 LUIS M. BRICEÑO-ARIAS & FERNANDO ROLDÁN

and [12, Proposition 2.8(i)] implies (ŷ, x̂) ∈ SP × SD. By defining û = −T ŷ, we obtain 0 ∈
∂f∗(x̂)+Kû. Moreover, ranT ∗ ∩dom g∗ ̸= ∅ yields g∗ ◦ (−T ∗) ∈ Γ0(K) and −T (∂g∗)(−T ∗) ⊂
∂(g∗ ◦−T ∗) in view of [3, Proposition 16.6(ii)]. Hence, we deduce from [3, Corollary 16.30] and
(4.3) that

−T ∗K∗x̂ ∈ ∂g(ŷ) ⇔ ŷ ∈ ∂g∗(−T ∗K∗x̂)

⇒ û = −T ŷ ∈ −T∂g∗(−T ∗K∗x̂)

⇒ û ∈ ∂(g∗ ◦ −T ∗)(K∗x̂) (4.4)

⇔ K∗x̂ ∈ ∂(g∗ ◦ −T ∗)∗(û)

⇔ 0 ∈ ∂(g∗ ◦ −T ∗)∗(û)−K∗x̂. (4.5)

Therefore, (x̂,−T ŷ) is a solution to (4.2).
1b: By [3, Theorem 16.3 & Theorem 16.47(i)], 0 ∈ ∂(g+f◦KT)(ŷ) = ∂g(ŷ)+T ∗K∗∂f(KTŷ).

The result follows from 1a.
2a: Since, by taking ŷ ∈ ∂g∗(−T ∗K∗x̂) such that 0 ∈ ∂f∗(x̂) −KTŷ, we obtain (4.3), the

argument is analogous to that in 1a.
2b: By [3, Theorem 16.3 & Theorem 16.47(i)], 0 ∈ ∂(f∗ + g∗ ◦ (−T ∗K∗))(x̂) = ∂f∗(x̂) −

KT (∂g∗)(−T ∗K∗x̂). The result hence follows from 2a.
2c: By [3, Theorem 16.3 & Theorem 16.47(i)], 0 ∈ ∂f∗(x̂) +K∂(g∗ ◦ −T ∗)(K∗x̂). Moreover

0 ∈ sri (dom g∗ − ran T ∗) and [3, Theorem 16.47] imply 0 ∈ ∂f∗(x̂)−KT (∂g∗)(−T ∗K∗x̂). The
result hence follows from 2a.

3: It follows from the second inclusion of (4.2) and [3, Theorem 16.47] that û ∈ ∂(g∗ ◦
(−T ∗))(K∗x̂) = −T∂g∗(−T ∗K∗x̂). Hence, there exists ŷ ∈ ∂g∗(−T ∗K∗x̂) such that û = −T ŷ,
which yields 0 ∈ ∂g(ŷ) + T ∗K∗x̂. Therefore, by combining û = −T ŷ with the first inclusion of
(4.2), we deduce (4.3) and the result follows from [12, Proposition 2.8(i)].

□

Remark 4.4. In the context of Proposition 4.3(3) we obtain the existence of ŷ ∈ SP such that
(x̂, ŷ) satisfies (4.3). If we additionally assume that ranT is closed, the second equation in (4.3)
implies that ŷ ∈ argminTy=−û g(y). We thus recover the results in [56, Lemma 2], obtained
when K = −Id.

Algorithm 4.5 (Split-Alternating Direction Method of Multipliers (SADMM)). In the context
of Problem 4.1, let Σ: G → G and Υ : H → H be strongly monotone self-adjoint linear operators
such that Σ−1 − K∗ΥK is monotone, let p0 ∈ K, and let (q0, x0) ∈ H × H. Consider, the
sequences defined by the recurrence

(∀n ∈ N)

yn = xn + Υ (KTpn − qn)

pn+1 ∈ argmin
p∈K

(
g(p) + 1

2∥Tp− (Tpn − ΣK∗yn)∥2Σ−1

)
qn+1 = proxΥf (Υ

−1xn +KTpn+1)

xn+1 = xn + Υ (KTpn+1 − qn+1).

(4.6)

Observe that the existence and uniqueness of solutions to the convex optimization problem
of the second step of (4.6) is not guaranteed without further hypotheses. The following result
provides sufficient conditions for the existence of solutions to the optimization problem in (4.6),
the equivalence between the sequences generated by Algorithm 1.2 and Algorithm 4.5, and the
weak convergence of SADMM.

Theorem 4.6. In the context of Problem 4.1, suppose that there exists a solution to (4.2), set

A = ∂f∗, B = ∂(g∗ ◦ (−T ∗)), and L = K∗, (4.7)

SPLIT-DOUGLAS-RACHFORD AND SPLIT-ADMM 13

and assume that 0 ∈ sri (dom g∗ − ranT ∗). Then, (pn)n∈N defined in (4.6) exists and the
following statements hold.

(1) (SDR reduces to SADMM) Let (x̃n)n∈N, (ũn)n∈N, and (ṽn)n∈N be the sequences gener-
ated by Algorithm 1.2 and set

(∀n ∈ N)

{
p̃n+1 ∈ T−1(−ṽn)

q̃n+1 = Υ−1(x̃n − x̃n+1 − ΥKṽn).
(4.8)

Moreover, set p1 ∈ K such that Tp1 = T p̃1, and q1 = q̃1, x1 = x̃1. Then, sequences
(pn)n≥1, (qn)n≥1, and (xn)n≥1 generated by Algorithm 4.5 satisfy, for every n ≥ 1,
T p̃n = Tpn, q̃n = qn, and x̃n = xn.

(2) (SADMM reduces to SDR) Let (pn)n≥1, (qn)n≥1, and (xn)n≥1 be sequences generated
by Algorithm 4.5 and define

(∀n ∈ N) un+1 = ΣK∗(xn+1 − xn)− Tpn+1. (4.9)

Moreover, set x̃0 = x1, ũ0 = u1, and let (x̃n)n∈N and (ũn)n∈N be the sequences generated
by Algorithm 1.2. Then, for all n ∈ N, x̃n = xn+1 and ũn = un+1.

(3) Let (pn)n∈N, (qn)n∈N, and (xn)n∈N be sequences generated by Algorithm 4.5. Then, the
following hold:
(a) There exists (ŷ, x̂, û) ∈ SP × SD × SP∗ such that (xn,−Tpn, qn) ⇀ (x̂, û,−Kû)

and û = −T ŷ.
(b) Suppose that ranT ∗ = K. Then, there exists ŷ ∈ SP such that pn ⇀ ŷ.

Proof. Note that g∗ ◦−T ∗ ∈ Γ0(G), that [3, Corollary 16.53] yields B = −T ◦ (∂g∗) ◦−T ∗, and
that JΣ−1B = (Id− Σ−1T (∂g∗)(−T ∗))−1. Therefore, it follows from [3, Corollary 16.30] that

(∀(u, y) ∈ G2) y = JΣ−1Bu ⇔ (u− y) ∈ −Σ−1T∂g∗(−T ∗y)

⇔ (∃p ∈ K)

{
y = u+Σ−1Tp

p ∈ ∂g∗(−T ∗y)

⇔ (∃p ∈ K)

{
y = u+Σ−1Tp

0 ∈ ∂g(p) + T ∗y

⇔ (∃p ∈ K)

{
y = u+Σ−1Tp

p ∈ S(u),
(4.10)

where S : u 7→ argmin(g+ 1
2∥T ·+Σu∥2Σ−1) and last equivalence follows from [3, Theorem 16.3]

and simple gradient computations. We conclude domS = G, proxΣg∗◦−T∗ = Id + Σ−1TS, and,
therefore,

Σ(Id− JΣ−1B) = Σ
(
Id− proxΣg∗◦−T∗

)
= −TS. (4.11)

Thus, the optimization problem in (4.6) is equivalent to

(∀n ∈ N) pn+1 ∈ S
(
K∗(xn + Υ (KTpn − qn))− Σ−1Tpn

)
(4.12)

and, hence, sequence (pn)n∈N exists.
1: It follows from (4.8), (1.8), (4.11), and (4.7) that, for every n ∈ N, T p̃n+1 = −ṽn =

TS(K∗x̃n +Σ−1ũn) and, thus, ũn+1 = ΣK∗Υ (KTp̃n+1 − q̃n+1)− T p̃n+1. Therefore, we have

(∀n ≥ 1) T p̃n+1 = TS(K∗(x̃n + Υ (KTp̃n − q̃n))− Σ−1T p̃n). (4.13)

In addition, from (1.8), (4.7), and (2.4) we have, for every n ∈ N, x̃n+1 = x̃n + ΥKT p̃n+1 −
ΥproxΥf (Υ

−1x̃n+KTp̃n+1) and, thus, (4.8) yields q̃n+1 = proxΥf (Υ
−1x̃n+KTp̃n+1). Altogether,

14 LUIS M. BRICEÑO-ARIAS & FERNANDO ROLDÁN

we deduce

(∀n ≥ 1)

 T p̃n+1 = TS(K∗(x̃n + Υ (KTp̃n − q̃n))− Σ−1T p̃n)

q̃n+1 = proxΥf (Υ
−1x̃n +KTp̃n+1)

x̃n+1 = x̃n + Υ (KTp̃n+1 − q̃n+1)

(4.14)

and the result follows from (4.12), x1 = x̃1, q1 = q̃1, and Tp1 = T p̃1.
2: Define

(∀n ∈ N)

{
vn = −Tpn+1

zn = xn + ΥKTpn+1

(4.15)

and fix n ≥ 1. Hence, we have

qn+1
(4.6)
= proxΥf (Υ

−1xn +KTpn+1)

⇔ xn + Υ (KTpn+1 − qn+1)
(2.4)
= proxΥ

−1

f∗ (xn + ΥKTpn+1)

⇔ xn+1
(4.7)
= JΥAzn. (4.16)

Moreover, from (4.12), (4.9), and (4.6), we obtain pn+1 ∈ S(K∗xn + Σ−1un). Hence, (4.11),
(4.7), and (4.15) yield vn = Σ(Id − JΣ−1B)(Lxn + Σ−1un). Altogether, from (4.9) we recover
the recurrence in Algorithm 1.2 shifted by one iteration and, by setting x̃0 = x1 and ũ0 = u1

the result follows.
3a. Set (un)n≥1 via (4.9) and define, for every n ∈ N, x̃n = xn+1 and ũn = un+1. Then,

2 asserts that (x̃n)n∈N and (ũn)n∈N are the sequences generated by Algorithm 1.2 with the
operators defined in (4.7). Note that A = ∂g∗ and B = ∂(g∗ ◦ (−T ∗)) are maximally monotone
[3, Theorem 20.25] and that the set Z defined in (1.1) is the primal-dual solution set to the
inclusion (4.2), which is non-empty by hypothesis. Then, by Theorem 3.3(2), there exists some
(x̂, û) solution to (4.2) such that (x̃n, ũn) = (xn+1, un+1) ⇀ (x̂, û). Moreover, Theorem 3.3(1)
yields

xn+1 − xn → 0, (4.17)

and, thus, (4.9) yields −Tpn+1 = un+1 − ΣK∗(xn+1 − xn) ⇀ û. Hence, since (4.6) yields,
for every n ∈ N, qn+1 = Υ−1(xn − xn+1) + KTpn+1, the weak continuity of K and (4.17)
imply qn ⇀ −Kû. We conclude that (xn,−Tpn, qn) ⇀ (x̂, û,−Kû). The result follows from
Proposition 4.3(3).

3b. By 3a, there exists ŷ ∈ SP such that Tpn ⇀ Tŷ. Thus, for every z ∈ K, there exists
w ∈ G such that z = T ∗w, which yields ⟨z | pn − ŷ⟩ = ⟨w | Tpn − T ŷ⟩ → 0 and, hence, pn ⇀ ŷ.
This concludes the proof. □

Remark 4.7. (1) Note that the existence of a sequence (pn)n∈N is guaranteed without any
further assumption than 0 ∈ sri (dom g∗ − ranT ∗). This result is weaker than strong
monotonicity or full range assumptions made in [9, 34] and improves [31], in which this
existence is assumed. Note that, even if there could exist a continuum of solutions to
the optimization problem in (4.6), the image through T is unique, in view of (4.12) and
(4.11).

(2) In the case when K = Id, Theorem 4.6(1) recovers the reduction of DRS when A = ∂f∗

and B = ∂(g∗ ◦ (−T ∗)) to ADMM and the convergence is guaranteed under weaker
conditions than the strong monotonicity and full range assumptions used in [34, Sec-
tion 5.1]. Under the assumption kerT = {0}, this result is obtained in [45, Theorem
3.2].

(3) Suppose that K = Id. Observe that, given the sequence (ṽn)n∈N generated by SDR,
Theorem 4.6(2) asserts that any sequence (pn)n∈N satisfying −Tpn+1 = ṽn allows the

SPLIT-DOUGLAS-RACHFORD AND SPLIT-ADMM 15

convergence of ADMM and its equivalence with DRS applied to the dual problem (D).
The equivalence of ADMM with respect to DRS applied to the primal (P) is studied in
[54, 56].

(4) In the case when K = Id, Theorem 4.6(2) provides the reduction of ADMM to DRS.
Note that this reduction does not need any further assumption on T than ranT ∗ ∩
dom g∗ ̸= ∅, which is weaker than kerT = {0}, used in [45, Theorem 3.2] (see also [1,
Appendix A] and [28, Proposition 3.43] in finite dimensions).

(5) Theorem 4.6 provides the weak convergence of shadow sequences, improving [34, The-
orem 5.1] in the optimization setting. In addition, Theorem 4.6 recovers the result in
[28, Proposition 3.42] when K has full column rank in the finite dimensional setting.

The following result allows to deal with more general formulations involving two linear
operators.

Corollary 4.8. Let H, G, H, and K be real Hilbert spaces, let g ∈ Γ0(K), let h ∈ Γ0(H), and
let T : K → G, J : H → H, and K : G → H be non-zero bounded linear operators such that
0 ∈ sri (dom g∗− ranT ∗), 0 ∈ sri (domh∗− ran J∗), and 0 ∈ sri (KTdom g+Jdomh). Consider
the convex optimization problem

min
y∈K

min
v∈H

g(y) + h(v)

s.t. KTy + Jv = 0, (4.18)

under the assumption that solutions exist. In addition, let Σ: G → G and Υ : H → H be strongly
monotone self-adjoint linear operators such that Σ−1 − K∗ΥK is monotone, let p0 ∈ K, let
v0 ∈ H, let x0 ∈ H, and consider the routine:

(∀n ∈ N)

yn = xn + Υ (KTpn + Jvn)

pn+1 ∈ argmin
p∈K

(
g(p) + 1

2∥Tp− (Tpn − ΣK∗yn)∥2Σ−1

)
vn+1 ∈ argmin

v∈J

(
h(v) + 1

2∥Jv +KTpn+1 + Υ−1xn∥2Υ
)

xn+1 = xn + Υ (KTpn+1 + Jvn+1).

(4.19)

Then, there exists (ŷ, v̂) solution to (4.18) such that the following hold:

(1) Tpn ⇀ Tŷ and Jvn ⇀ Jv̂.
(2) Suppose that ranT ∗ = K. Then, pn ⇀ ŷ.
(3) Suppose that ran J∗ = H. Then, vn ⇀ v̂.

Proof. Note that, by setting f = (−J) ▷ h : q 7→ minJv=−q h(v), (4.18) can be equivalently
written as

min
y∈K

(
g(y) + min

−Jv=KTy
h(v)

)
≡ min

y∈K

(
g(y) + f(KTy)

)
. (4.20)

Since 0 ∈ sri (domh∗ − ran J∗), [3, Corollary 15.28] yields f = (h∗ ◦ −J∗)∗ ∈ Γ0(H). Hence,
the problem in (4.18) is a particular instance of Problem 4.1 and it follows from (4.6), (2.4),
and an argument analogous to that in (4.11) that

(∀n ∈ N) qn+1 = Υ−1 (Id− proxΥ
−1

h∗◦−J∗) (xn + ΥKTpn+1) = −Jvn+1, (4.21)

where vn+1 is defined in (4.19). Hence, (4.19) is a particular instance of Algorithm 4.5. More-
over, [3, Proposition 12.36(i)] yields 0 ∈ sri (KTdom g+Jdomh) = sri (KTdom g−dom f) and
Proposition 4.3(1b) implies the existence of a solution to (4.2). Altogether, Theorem 4.6(3)
asserts that there exists (ŷ, x̂) ∈ SP × SD such that (xn,−Tpn, qn) ⇀ (x̂,−T ŷ,KT ŷ) and
û = −T ŷ ∈ SP∗ . Moreover, since 0 ∈ sri (domh∗ − ran J∗), it follows from (4.20) and [3,
Corollary 15.28(i)] that there exists v̂ ∈ H such that (ŷ, v̂) is a solution to (4.18). In particular,

16 LUIS M. BRICEÑO-ARIAS & FERNANDO ROLDÁN

Tpn ⇀ Tŷ and qn = −Jvn ⇀ KTŷ = −Jv̂, which yields 1. Assertions 2 and 3 follow
analogously as in the proof of Theorem 4.6(3b). □

Remark 4.9. (1) In the context of Corollary 4.8, let U = Υ−1 −KΣK∗ and V = Σ−1 −
K∗ΥK, which are monotone in view of Proposition 2.1. Then, Algorithm 4.5 can be
written equivalently as
pn+1 ∈ argmin

p∈K

(
g(p) + 1

2∥KTp+ Jvn + Υ−1xn∥2Υ + 1
2∥p− pn∥2T∗V T

)
vn+1 ∈ argmin

v∈H

(
h(v) + 1

2∥KTpn+1 + Jv + Υ−1xn∥2Υ
)

xn+1 = xn + Υ (KTpn+1 + Jvn+1),

(4.22)

which is a non-standard version of the preconditioned ADMM (PADMM) [9] without
proximal quadratic term in the second optimization problem of (4.22). It considers the
augmented Lagrangian with non-standard metric

LΥ : (p, v, x) 7→ g(p) + h(v) + ⟨x | KTp+ Jv⟩+ 1

2
∥KTp+ Jv∥2Υ , (4.23)

which generalizes the classical augmented Lagrangian LrId for some r > 0. Without the
strong monotonicity assumptions used in [9, Theorem 2.1 & Theorem 3.1], the sequences
of algorithm (4.19) are well defined and Corollary 4.8 provides weak convergence. More-
over, in the case when J = −Id and Υ = rId, Corollary 4.8 ensures convergence under
weaker assumptions than [51, Algorithm 2] (see also [4] for a variant involving a dif-
ferentiable convex function). In [58], a non-standard metric is included only in the
multiplier update step of [51, Algorithm 2], but the convergence of the iterates is not
obtained.

(2) In the case when K = Id and Σ = Υ−1, the algorithm in (4.22) reduces to the ADMM
algorithm with the augmented Lagrangian with non-standard metric (4.23), which, given
(q0, x0) ∈ H ×H, iterates

(∀n ∈ N)

pn+1 ∈ argmin

p∈K

(
g(p) + 1

2∥Tp + Jvn + Υ−1xn∥2Υ
)

vn+1 ∈ argmin
v∈H

(
h(v) + 1

2∥Tpn+1 + Jv + Υ−1xn∥2Υ
)

xn+1 = xn + Υ (Tpn+1 + Jvn+1).

(4.24)

In the particular case when Υ = τ Id, it reduces to ADMM [7] and [31, 34, 35, 37] when
J = −Id.

(3) As in Remark 4.7(1), sequences (Tpn)n∈N and (Jvn)n∈N in (4.24) are unique even if
the solutions to the optimization problems in (4.24) are not unique. The uniqueness
of (pn)n∈N (resp. (vn)n∈N) is guaranteed, e.g., if g (resp. h) is strictly convex or if
ranT ∗ = K (resp. ran J∗ = H).

The following corollary is a direct consequence of Theorem 4.6 when T = Id.

Corollary 4.10. In the context of Problem 4.1, suppose that T = Id and that there exists
a solution to (4.2). Let Σ: G → G and Υ : H → H be strongly monotone self-adjoint linear
operators such that Σ−1 −K∗ΥK is monotone, let p0 ∈ K, let (q0, x0) ∈ H ×H, and consider
the sequences (pn)n∈N and (xn)n∈N generated by the recurrence

(∀n ∈ N)

yn = xn + Υ (Kpn − qn)

pn+1 = proxΣ
−1

g

(
pn − ΣK∗yn

)
qn+1 = proxΥf (Υ

−1xn +Kpn+1)

xn+1 = xn + Υ (Kpn+1 − qn+1).

(4.25)

SPLIT-DOUGLAS-RACHFORD AND SPLIT-ADMM 17

Then, there exists (ŷ, x̂) ∈ SP × SD such that (pn, xn) ⇀ (ŷ, x̂).

Remark 4.11. (1) Note that the explicit method proposed in Corollary 4.10 includes two
multiplier updates as the algorithm in [20, Algorithm I]. Our method allows for dif-
ferent step-sizes in primal and dual updates and the main distinction is that the third
step in (4.25) includes the information of its second step, while the algorithm in [20,
Algorithm I] uses the information of previous iteration.

(2) Note that (4.25) and (2.4) yield, for every n ∈ N,

xn+1 = xn + ΥKpn+1 − Υqn+1

= Υ (Id− proxΥf)(Υ
−1xn +Kpn+1)

= proxΥ
−1

f∗ (xn + ΥKpn+1) (4.26)

and yn+1 = xn+1 + Υ (Kpn+1 − qn+1) = 2xn+1 − xn. Therefore, when ∥Υ 1
2 ◦ K∗ ◦

Σ
1
2 ∥ < 1, (4.25) reduces to the algorithm proposed in [47] applied to the dual problem

min(f∗ + g∗ ◦ −K∗)(H). Hence, Corollary 4.10 is a generalization of [47, Theorem 1]
in this context.

(3) Observe that the second step in (4.25) is explicit, differing from the first step in ADMM
(4.24), which is implicit. This feature allows for an algorithm with very low computa-
tional cost by iteration. However, the number of iterations may be much larger than
those of ADMM in some instances, as we verify numerically in Section 5.2.

5. Numerical experiments

In this section we provide two numerical experiments. In the first experiment we compare
SDR with several schemes in the literature for solving the total variation image restoration
problem. In the second experiment we consider an academic example in which splitting K
from T has numerical advantages with respect to ADMM.

5.1. Total variation image restoration. A classical model in image processing is the total
variation image restoration [49], which aims at recovering an image from a blurred and noisy
observation under piecewise constant assumption on the solution. The model is formulated via
the optimization problem

min
x∈[0,255]N

1

2
∥Rx− b∥22 + α∥∇x∥1 =: FTV (x), (5.1)

where x ∈ [0, 255]N is the image of N = N1 × N2 pixels to recover from a blurred and noisy
observation b ∈ Rm, R : RN → Rm is a linear operator representing a Gaussian blur, the
discrete gradient ∇ : x 7→ ∇x = (D1x,D2x) includes horizontal and vertical differences through
linear operators D1 and D2, respectively, its adjoint ∇∗ is the discrete divergence (see, e.g.,
[17]), and α ∈]0,+∞[. A difficulty in this model is the presence of the non-smooth ℓ1 norm
composed with the discrete gradient operator ∇, which is non-differentiable and its proximity
operator has not a closed form.

Note that, by setting f = ∥R ·−b∥2/2, g1 = α∥ · ∥1, and g2 = ι[0,255]N , L1 = ∇, and L2 = Id,
(5.1) can be reformulated as min(f+g1 ◦L1+g2 ◦L2) or equivalently as (qualification condition
holds)

find x̂ ∈ RN such that 0 ∈ ∂f(x̂) + L∗
1∂g1(L1x) + L∗

2∂g2(L2x̂), (5.2)

which is a particular instance of (3.15), in view of [3, Theorem 20.25]. Moreover, for every
τ > 0, Jτ∂f = (Id+τR∗R)−1(Id−τR∗b), for every i ∈ {1, 2}, Jτ(∂gi)−1 = τ(Id−proxgi/τ)(Id/τ),

18 LUIS M. BRICEÑO-ARIAS & FERNANDO ROLDÁN

proxg2/τ = P[0,255]N , and proxg1/τ = proxα∥·∥1/τ is the component-wise soft thresholder, com-

puted in [3, Example 24.34]. Note that (Id+ τR∗R)−1 can be computed efficiently via a diago-
nalization of R using the fast Fourier transform F [39, Section 4.3]. Altogether, Remark 3.4(5)
allows us to write Algorithm 1.2 as Algorithm 1 below, where we set Υ = τ Id, Σ1 = σ1Id, and
Σ2 = σ2Id, for τ > 0, σ1 > 0, and σ2 > 0. We denote by R the primal-dual error

R : (x+, u+, x, u) 7→

√
∥(x+, u+)− (x, u)∥2

∥(x, u)∥2
(5.3)

and by ε > 0 the convergence tolerance. The error R is inspired from (3.11) in the proof of
Theorem 3.3.

Algorithm 1

1: Fix x0 ∈ RN , v1,0 ∈ Rm, v2,0 ∈ R2N , τσ1∥∇∥2 + τσ2 ≤ 1, and r0 > ε > 0.
2: while rn > ε do
3: xn+1 = (Id + τR∗R)−1(xn − τ∇∗v1,n − τv2,n − τR∗b)
4: v1,n+1 = σ1(Id− proxα∥·∥1/σ1

)(v1,n/σ1 +∇(2xn+1 − xn))

5: v2,n+1 = σ2

(
Id− P[0,255]N

)
(v2,n/σ2 + 2xn+1 − xn)

6: rn = R
(
(xn+1, v1,n+1, v2,n+1), (xn, v1,n, v2,n)

)
7: end while
8: return (xn+1, v1,n+1, v2,n+1)

In this case, (3.17) reduces to the monotonicity of (τ−1−σ2)Id−σ1∇∗∇, which is equivalent
to

τσ1∥∇∥2 + τσ2 ≤ 1, (5.4)

in view of Proposition 2.1. By using the power iteration [43] with tolerance 10−9, we obtain
∥∇∥2 ≈ 7.9997. This is consistent with [16, Theorem 3.1].

Observe that, when σ1 = σ2 = σ, Algorithm 1 reduces to the algorithm proposed in [19]
(when στ(∥∇∥2 + 1) < 1) or [24, Theorem 3.3], where the case στ(∥∇∥2 + 1) = 1 is included.

We provide two main numerical experiments in this subsection: we first compare the ef-
ficiency of Algorithm 1 when the step-sizes achieve the boundary in (5.4), verifying that the
efficiency is better when the equality is achieved. Next, we compare the performance of different
methods in the literature with optimal step-sizes. For these comparisons, we consider the test
image of 256× 256 pixels (N1 = N2 = 256) in Figure 4a1 (denoted by x). The operator blur R
is set as a Gaussian blur of size 9× 9 and standard deviation 4 (applied by MATLAB function
fspecial) and the observation b is obtained by b = Rx+e ∈ Rm1×m2 , where m1 = m2 = 256 and
e is an additive zero-mean white Gaussian noise with standard deviation 10−3 (using imnoise
function in MATLAB). We generate 20 random realization of random variable e leading to 20
observations (bi)1≤i≤20.

In Table 1 we study the efficiency of Algorithm 1, in the simpler case when σ1 = σ2 = σ,
as parameters σ and τ approach the boundary στ(∥∇∥2 + 1) = 1. In particular, we set

σ = τ = κ/(10
√

1 + ∥∇∥2) for κ ∈ {6, 7, 8, 9, 10}. We provide the averages of CPU time,
number of iterations, and percentage of error between objective values FTV (x) and FTV (xn)
obtained by applying Algorithm 1 for the 20 observations (bi)1≤i≤20 and for κ ∈ {6, 7, 8, 9, 10}.
The tolerance is set as ε = 10−6. We observe that the algorithm becomes more efficient (in time
and iterations) and accurate (in terms of the objective value) as long as parameters approach
the boundary. This conclusion is confirmed in Figure 1, which shows the performance obtained
with the observation b13. Henceforth, we consider only parameters in the boundary of (5.4).

1Image Circles obtained from http://links.uwaterloo.ca/Repository.html

http://links.uwaterloo.ca/Repository.html

SPLIT-DOUGLAS-RACHFORD AND SPLIT-ADMM 19

Table 1. Averages of CPU time, number of iterations, and percentage of
error in the objective value obtained from Algorithm 1 with τ = σ1 = σ2 =
κ/(10

√
1 + ∥∇∥2) and tolerance 10−6.

ε = 10−6

κ Av. Time(s) Av. Iter. Av.% error o.v.

6 43.22 8729 0.3541

7 40.23 8179 0.3536

8 38.56 7725 0.3533

9 36.43 7340 0.3530

10 34.66 7003 0.3528

0 1000 2000 3000 4000 5000 6000
10

-6

10
-5

10
-4

(a)

0 10 20 30 40 50 60 70 80
10

-6

10
-5

10
-4

(b)

Figure 1. Comparison of Algorithm 1 with τ = σ1 = σ2 =
κ/(10

√
1 + ∥∇∥2)), for image reconstruction from observation b13.

Next, we compare Algorithm 1 when τσ1∥∇∥2 + τσ2 = 1, with alternative algorithms in
[24, Theorem 3.3], [24, Theorem 3.1] or [55, Corollary 4.2], [12, Theorem 3.1], and [44], which
are called “Condat”, “Condat-Vũ”, “MS”, and “AFBS”, respectively. In order to provide a
fair comparison in our example, we approximate the best step-sizes by considering a mesh
on the feasible set defined by the conditions allowing convergence for each algorithm. In the
case when ε = 10−6, the best performance of Condat-Vũ is obtained by setting τ = 1.2 and
σ = 0.99 · (2 − τ)/(2τ∥∇∥2) which is next to the boundary of condition στ∥∇∥2 < (1 − τ/2).
For MS, the performance is better when the only step-size τ is next to the boundary of the
condition τ < 1/

√
1 + ∥∇∥2, which leads us to set τ = 0.99/

√
1 + ∥∇∥2. For AFBS, we

found as best parameters τ = 0.13 and λn ≡ 1.7/(65n + 10)0.505 (see [44]). In the case of
Condat, we consider 34 cases of parameters τ and σ satisfying στ(1 + ∥∇∥2) = 1, by setting

τk = δk/(800
√

1 + ∥∇∥2) and σk = 800/(δk
√
1 + ∥∇∥2), where δ = 8001/8 and k ∈ {1, . . . , 34}.

For Algorithm 1 we consider the same parameters (τk)1≤k≤34 than those in Condat, and we
set σℓ

1,k = (1 − ℓ)/(τk∥∇∥2) and σℓ
2,k = ℓ/τk, for ℓ ∈ 10−1 · {5, 0.1, 0.05, 0.01, 0.005, 0.003}, in

view of (5.4). In Table 2 we provide the averages of CPU time, number of iterations, and
the percentage of error between objective values FTV (x) and FTV (xn) obtained by previous
algorithms with tolerance ε = 10−6 considering the observations (bi)1≤i≤20. We show the best
5 cases for Algorithm 1 (k ∈ {20, . . . , 24}) and the best case for Condat (k = 22). We observe
that Algorithm 1 and Condat reduce drastically the computational time and iterations obtained
in Table 1, which shows the advantage of searching optimal parameters in the boundary of the
condition of convergence. We also observe in Table 2 that Algorithm 1 (k = 22 and ℓ = 0.001)
is the most efficient method for this tolerance, followed closely by Condat (k = 22). Both
methods outperform drastically the competitors. In Figure 2 we show the relative error versus
iterations and time for the observation b13, confirming previous results.

20 LUIS M. BRICEÑO-ARIAS & FERNANDO ROLDÁN

Table 2. Averages of CPU time, number of iterations, and percentage of
error in the objective value for Algorithm 1 with τσ1∥∇∥2 + τσ2 = 1, Condat,
Condat-Vũ, AFBS, and MS with tolerance 10−6.

ε = 10−6

Algorithm τ σ1 Av. Time(s) Av. Iter. Av. % error o.v.

Alg.1

0.77 0.16 21.12 4106 0.3531
1.17 0.11 15.33 3223 0.3562

1.77 0.07 13.97 2787 0.3649
2.69 0.05 14.36 2891 0.3771
4.09 0.03 16.23 3372 0.3907

Condat 1.77 - 14.89 2853 0.3673

Condat-Vũ 1.2 - 28.19 3539 0.3738

MS 0.33 - 62.48 6193 0.3506

AFBS 0.13 - 85.76 11104 0.6611

0 500 1000 1500 2000 2500
10

-6

10
-5

10
-4

(a)

0 5 10 15 20 25 30
10

-6

10
-5

10
-4

(b)

Figure 2. Comparison of Algorithm 1 with τσ1∥∇∥2 + τσ2 = 1, Condat,
Condat-Vũ, AFBS, and MS (observation b13).

Table 3. Averages of CPU time, number of iterations, and percentage of error
in the objective value for Algorithm 1 with τσ1∥∇∥2 + τσ2 = 1 and Condat
with tolerance 10−8.

ε = 10−8

Algorithm τ σ1 Av. Time(s) Av. Iter. Av. % error o.v.

Alg. 1

0.77 0.16 93.36 19560 0.3514
1.17 0.11 83.15 17561 0.3515

1.77 0.07 100.06 20796 0.3515

2.69 0.05 128.80 26801 0.3516
4.09 0.03 160.92 33709 0.3517

Condat 1.17 - 93.77 18451 0.3515

In order to make a more precise comparison of Algorithm 1 and Condat, we consider a smaller
tolerance ε = 10−8. The obtained results are shown in Table 3 and Figure 3. We observe that
Algorithm 1 (k = 21 and ℓ = 0.001) achieves the tolerance in approximately 11% less CPU
time than Condat in its best case (k = 21). The efficiency in the case of the observation b13 is
illustrated in Figure 3.

SPLIT-DOUGLAS-RACHFORD AND SPLIT-ADMM 21

0 2000 4000 6000 8000 10000 12000 14000
10

-8

10
-7

10
-6

10
-5

10
-4

(a)

0 20 40 60 80 100 120 140 160
10

-8

10
-7

10
-6

10
-5

10
-4

(b)

Figure 3. Comparison of Algorithm 1 with τσ1∥∇∥2 + τσ2 = 1 and Condat
(observation b13).

(a) Original,

FTV (x) = 10.32

(b) Blurry/noisy b13,

FTV (b) = 53.13,
PSNR=22.15

(c) AFBS,

FTV (x100) = 11.28,
PSNR=25.53.

(d) MS,

FTV (x100) = 10.56,
PSNR=26.38.

(e) Condat-Vũ,

FTV (x100) = 10.94,
PSNR=28.38.

(f) Condat (k = 21),

FTV (x100) = 10.57,
PSNR=28.80.

(g) Alg. 1 (k =
21, ℓ = 0.001),

FTV (x100) = 10.55,
PSNR=28.80.

Figure 4. Reconstructed image, after 100 iterations, from blurred and noisy
image using AFBS, MS, Condat-Vũ, Condat and Alg. 1.

The reconstructed images, after 100 iterations, for the different algorithms are shown in
Figure (4). The best reconstruction, in terms of objective value FTV and PSNR (Peak signal-
to-noise ratio), are obtained by Condat and Algorithm 1.

5.2. Split-ADMM in an academical example. In this section, we implement Algorithm 4.5,
Corollary 4.10, and ADMM in (4.24) for solving an academical example in the context of Ex-
ample 4.2. We compare their performances when solving the following optimization problem

min
x∈RN

F (x) = h(x− z) + α∥Mx∥1, (5.5)

22 LUIS M. BRICEÑO-ARIAS & FERNANDO ROLDÁN

where h : RN → R is defined by

h : x = (ξi)1≤i≤n 7→
N∑
i=1

ϕ(ξi), ϕ : R → R : ξ 7→

|ξ| − δ

2
, if |ξ| > δ;

ξ2

2δ
, if |ξ| ≤ δ,

(5.6)

δ > 0, z ∈ RN , α > 0, and M is a N×N symmetric positive definite real matrix. The first term
in (5.5) is a data fidelity penalization using the Huber distance and the second term imposes
sparsity in the solution. This type of problems appears naturally in image and signal denoising
(see, e.g., [21, 42, 46, 50]).

Since M is symmetric, there exist N × N real matrices P and D, such that P⊤ = P−1,
D is diagonal, and M = PDP⊤. By setting g = h(· − z), f = α∥ · ∥1, K = PD1−ηP⊤, and
T = PDηP⊤, for some η ∈ [0, 1], we deduce that KT = M and (5.5) is a particular instance of
(P). Next, we illustrate the efficiency of Algorithm 4.5 for different values of η ∈ [0, 1]. Observe
that, in the case when η = 0 we have T = Id and Algorithm 4.5 reduces to the algorithm in
Corollary 4.10. On the other hand, in the case when η = 1 we have K = Id and Algorithm 4.5
reduces to ADMM in (4.24). We have proxf : (ξi)1≤i≤n 7→ prox|·|(ξi), where prox|·| is the

scalar soft-thresholder operator [3, Example 24.34(iii)]. Note that, since kerT = {0}, for every
η ∈ [0, 1], the optimization problem in the second step of (4.6) admits a unique solution, in
view of Remark 4.9(3). Therefore, when Υ = τ Id and Σ = σId, Algorithm 4.5 in this example
reads as follows.

Algorithm 2

1: Fix τ > 0, p0, q0, x0 ∈ RN , ε > 0, and r0 > ε.
2: while rn > ε do
3: yn =xn + τ(KTpn − qn)
4: pn+1 =zer

(
σ∇h(· − z) + T ∗(T · −(Tpn − σK∗yn)

))
5: qn+1 = proxf/τ (xn/τ +KTpn+1)

6: xn+1 = xn + τ(KTpn+1 − qn+1)
7: un+1 = σK∗(xn+1 − xn)− Tpn+1

8: rn+1 = R(xn+1, un+1, xn, un)
9: end while

10: return (pn+1, qn+1, xn+1)

Note that the step 4 in Algorithm 2 involves the resolution of a non-linear equation when
η > 0. On the other hand, in the case when η = 0, we have T = Id and, as noticed in
Remark 4.11(3), the step 4 can be computed explicitly by using proxg = z + proxh(· − z)
[3, Proposition 23.17(iii)] and the fact that δh is the real Huber function (see [3, Example
8.44&Example 24.9]). We consider as stopping criterion the primal-dual relative error defined
in (5.3).

We compare the performance of Algorithm 2 when η ∈ {0, 0.8, 0.9, 1} with the standard
solver fmincon of MATLAB for N ∈ {100, 250, 500} and different values of the minimum and
maximum eigenvalues λmax ≥ λmin > 0 of the matrix M . Since the expected value of λmax

(resp. λmin) of random matrices generated by a normal distribution increases (resp. decreases)
as N increases (see [32, Table 1.2]), we consider three classes of matrices with condition number
κ = λmax/λmin = 50 for each dimension N ∈ {100, 250, 500}:

• Class A: Class of matrices M with small eigenvalues (λmax = N/1000).
• Class B: Class of matrices M with average eigenvalues (λmax = 4N).
• Class C: Class of matrices M with large eigenvalues (λmax = 100N).

SPLIT-DOUGLAS-RACHFORD AND SPLIT-ADMM 23

For each class, we generate 30 random matrices using the randn function of MATLAB and
the eigenvalues of each randomly generated matrix M is forced to satisfy the conditions of
each class after a singular value decomposition M = PDP⊤. We next generate T and K
as described before. Step 4 in Algorithm 2 is computed via fsolve function of MATLAB (for
η > 0). We define the percentage of improvement of an algorithm with respect to fmincon via
In̄ = (F − F (pn̄)) · 100/F , where F stands for the value of the function obtained by fmincon
with tolerance 10−14 and F (pn̄) is the value of the function obtained by Algorithm 2 when it
stops in iteration n̄. Finally, we set the tolerance ε = 10−6 and τ = 1 in Algorithm 2.

Table 4 provides the averages of CPU time, iterations, and percentage of improvement with
respect to fmincon of Algorithm 2 in the cases η ∈ {0, 0.8, 0.9, 1} for the 30 random matrices
in each class and N ∈ {100, 250, 500}. We split our analysis of the results in the three classes
of random matrices.

The best performance in the class A (small eigenvalues) is obtained by the case when η = 0
(Corollary 4.10) in each dimension. The function value is very close to the one obtained by
fmincon (difference of 10−5%). For this class, the cases when η ∈ {0.8, 0.9} are less accurate
and ADMM (η = 1) is even more precise but much slower than the case when η = 0 for this
class. This is explained by a very low cost per iteration and a comparable average number of
iterations of the case when η = 0.

On the other hand, for matrices belonging to the class B (average eigenvalues), the most
efficient method is SADMM with η = 0.9. The method needs very few number of iterations on
average and it is more accurate than fmincon, since In̄ is positive. This feature is also verified
in η ∈ {0.8, 1} but the number of iterations and computational time is larger. We observe that
the case when η = 0 shows a very large number of iterations for achieving convergence and
looses precision as the dimension increases. We conclude that SADMM outperforms drastically
ADMM and the algorithm of Corollary 4.10, for suitable factorizations of matrices M with
average eigenvalues.

Finally, ADMM (η = 1) is the best algorithm for the class C. It needs a very few number of
iterations on average for achieving convergence, which nicely scales with the dimension. The
computational time is around 1/3 of the closest competitor and the precision is as good as
fmincon. SADMM algorithms when η ∈ {0.8, 0.9} are similarly accurate but much slower. The
case when η = 0 is very far from the solution and extremely slow for this class in all dimensions.

Acknowledgments

The first author thanks the support of ANID under grant FONDECYT 1190871 and grant Redes

180032. The second author thanks the support of ANID-Subdirección de Capital Humano/Doctorado

Nacional/2018-21181024 and of the Dirección de Postgrado y Programas from UTFSM through Pro-

grama de Incentivos a la Iniciación Cient́ıfica (PIIC).

References

[1] T. Aspelmeier, C. Charitha, and D. R. Luke, Local linear convergence of the ADMM/Douglas-Rachford
algorithms without strong convexity and application to statistical imaging, SIAM J. Imaging Sci., 9 (2016),
pp. 842–868.

[2] J.-P. Aubin and H. Frankowska, Set-valued analysis, vol. 2 of Systems & Control: Foundations &

Applications, Birkhäuser Boston, Inc., Boston, MA, 1990.

[3] H. H. Bauschke and P. L. Combettes, Convex Analysis and Monotone Operator Theory in Hilbert
Spaces, CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, Springer, Cham, second ed.,

2017.
[4] R. I. Boţ and E. R. Csetnek, ADMM for monotone operators: convergence analysis and rates, Adv.

Comput. Math., 45 (2019), pp. 327–359.

[5] R. I. Boţ, E. R. Csetnek, and A. Heinrich, A primal-dual splitting algorithm for finding zeros of sums
of maximal monotone operators, SIAM J. Optim., 23 (2013), pp. 2011–2036.

24 LUIS M. BRICEÑO-ARIAS & FERNANDO ROLDÁN

Table 4. Performance of Algorithm 2 for N ∈ {100, 250, 500}, η ∈
{0, 0.8, 0.9, 1} and classes A, B, and C.

N Class η 0 0.8 0.9 1

100

A

Av. time 0.019 4.86 4.92 4.37

Av. iter 688 704 717 656
Av. In̄ (%) -1.8 · 10−5 -0.47 -0.07 -1.5 · 10−6

B

Av. time 17.52 1.15 0.50 5.41

Av. iter 798258 118 49 519
Av. In̄ (%) 0.63 0.36 0.33 0.64

C

Av. time 31.44 3.77 1.07 0.34

Av. iter 1410638 395 107 30
Av. In̄ (%) -1607 -8.4 · 10−8 -8.1 · 10−8 -5.1 · 10−8

250

A
Av. time 0.036 8.94 9.25 8.88
Av. iter 380 359 387 393

Av. In̄ (%) -1.6 · 10−5 -1.03 -0.18 -8 · 10−6

B

Av. time 136.82 5.54 2.61 32.15

Av. iter 1547593 143 64 886
Av. In̄ (%) -0.15 0.18 0.19 0.25

C
Av. time 85.28 27.14 5.83 1.76
Av. iter 971230 761 120 39

Av. In̄ (%) -18287 -1.3 · 10−7 -9.5 · 10−8 -3.3 · 10−8

500

A
Av. time 0.067 13.41 13.58 13.52
Av. iter 123 128 129 132

Av. In̄ (%) 7.2 · 10−5 -1.47 -0.30 8.2 · 10−5

B
Av. time 581.25 39.99 23.95 113.24
Av. iter 1249041 248 162 740

Av. In̄ (%) -2.32 0.13 0.13 0.15

C
Av. time 205.34 193.95 32.09 12.31
Av. iter 419896 1200 182 46

Av. In̄(%) -261808 -1.8 · 10−7 -1.5 · 10−7 -9.4 · 10−8

[6] R. I. Boţ and C. Hendrich, A Douglas-Rachford type primal-dual method for solving inclusions with

mixtures of composite and parallel-sum type monotone operators, SIAM J. Optim., 23 (2013), pp. 2541–

2565.
[7] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, Distributed optimization and statistical

learning via the alternating direction method of multipliers, Foundations and Trends in Machine Learning,

3 (2011), pp. 1–122.
[8] K. Bredies and H. Sun, Preconditioned Douglas-Rachford splitting methods for convex-concave saddle-

point problems, SIAM J. Numer. Anal., 53 (2015), pp. 421–444.

[9] K. Bredies and H. Sun, A proximal point analysis of the preconditioned alternating direction method of
multipliers, J. Optim. Theory Appl., 173 (2017), pp. 878–907.

[10] K. Bredies and H. P. Sun, Preconditioned Douglas-Rachford algorithms for TV- and TGV-regularized
variational imaging problems, J. Math. Imaging Vision, 52 (2015), pp. 317–344.

[11] L. Briceño, R. Cominetti, C. E. Cortés, and F. Mart́ınez, An integrated behavioral model of land use
and transport system: a hyper-network equilibrium approach, Netw. Spat. Econ., 8 (2008), pp. 201–224.

[12] L. M. Briceño-Arias and P. L. Combettes, A monotone + skew splitting model for composite monotone
inclusions in duality, SIAM J. Optim., 21 (2011), pp. 1230–1250.

[13] L. M. Briceño Arias and P. L. Combettes, Monotone operator methods for Nash equilibria in non-
potential games, in Computational and analytical mathematics, vol. 50 of Springer Proc. Math. Stat.,

Springer, New York, 2013, pp. 143–159.
[14] L. M. Briceño-Arias and D. Davis, Forward-backward-half forward algorithm for solving monotone in-

clusions, SIAM J. Optim., 28 (2018), pp. 2839–2871.
[15] L. M. Briceño-Arias and F. Roldán, Primal-dual splittings as fixed point iterations in the range of linear

operators, 2019, https://arxiv.org/abs/1910.02329.

https://arxiv.org/abs/1910.02329

SPLIT-DOUGLAS-RACHFORD AND SPLIT-ADMM 25

[16] A. Chambolle, An algorithm for total variation minimization and applications, J. Math. Imaging Vision,

20 (2004), pp. 89–97, https://doi.org/10.1023/B:JMIV.0000011320.81911.38.

[17] A. Chambolle, V. Caselles, D. Cremers, M. Novaga, and T. Pock, An introduction to total variation
for image analysis, in Theoretical Foundations and Numerical Methods for Sparse Recovery, vol. 9 of Radon

Ser. Comput. Appl. Math., Walter de Gruyter, Berlin, 2010, pp. 263–340.
[18] A. Chambolle and P.-L. Lions, Image recovery via total variation minimization and related problems,

Numer. Math., 76 (1997), pp. 167–188.

[19] A. Chambolle and T. Pock, A first-order primal-dual algorithm for convex problems with applications
to imaging, J. Math. Imaging Vision, 40 (2011), pp. 120–145.

[20] G. Chen and M. Teboulle, A proximal-based decomposition method for convex minimization problems,

Math. Programming, 64 (1994), pp. 81–101.
[21] J. Colas, N. Pustelnik, C. Oliver, P. Abry, J.-C. Géminard, and V. Vidal, Nonlinear denoising for

characterization of solid friction under low confinement pressure, Physical Review E , 42 (2019), p. 91.

[22] P. L. Combettes, Quasi-Fejérian analysis of some optimization algorithms, in Inherently Parallel Algo-
rithms in Feasibility and Optimization and their Applications (Haifa, 2000), vol. 8 of Stud. Comput. Math.,

North-Holland, Amsterdam, 2001, pp. 115–152.

[23] P. L. Combettes and B. C. Vũ, Variable metric forward-backward splitting with applications to monotone
inclusions in duality, Optimization, 63 (2014), pp. 1289–1318.

[24] L. Condat, A primal-dual splitting method for convex optimization involving Lipschitzian, proximable and
linear composite terms, J. Optim. Theory Appl., 158 (2013), pp. 460–479.

[25] D. Dũng and B. C. Vũ, A splitting algorithm for system of composite monotone inclusions, Vietnam J.

Math., 43 (2015), pp. 323–341.
[26] I. Daubechies, M. Defrise, and C. De Mol, An iterative thresholding algorithm for linear inverse prob-

lems with a sparsity constraint, Comm. Pure Appl. Math., 57 (2004), pp. 1413–1457.

[27] J. Douglas, Jr. and H. H. Rachford, Jr., On the numerical solution of heat conduction problems in
two and three space variables, Trans. Amer. Math. Soc., 82 (1956), pp. 421–439.

[28] J. Eckstein, Splitting Methods for Monotone Operators with Applications to Parallel Optimization, PhD

thesis, Massachusetts Institute of Technology, 1989.
[29] J. Eckstein and D. P. Bertsekas, On the Douglas-Rachford splitting method and the proximal point

algorithm for maximal monotone operators, Math. Programming, 55 (1992), pp. 293–318.

[30] J. Eckstein and B. F. Svaiter, A family of projective splitting methods for the sum of two maximal
monotone operators, Math. Program., 111 (2008), pp. 173–199.

[31] J. Eckstein and W. Yao, Understanding the convergence of the alternating direction method of multipliers:
theoretical and computational perspectives, Pac. J. Optim., 11 (2015), pp. 619–644.

[32] A. Edelman, Eigenvalues and condition numbers of random matrices, SIAM J. Matrix Anal. Appl., 9

(1988), pp. 543–560.
[33] M. Fukushima, The primal Douglas-Rachford splitting algorithm for a class of monotone mappings with

application to the traffic equilibrium problem, Math. Programming, 72 (1996), pp. 1–15.

[34] D. Gabay, Chapter IX applications of the method of multipliers to variational inequalities, in Augmented
Lagrangian Methods: Applications to the Numerical Solution of Boundary-Value Problems, M. Fortin and

R. Glowinski, eds., vol. 15 of Studies in Mathematics and Its Applications, Elsevier, 1983, pp. 299 – 331.
[35] D. Gabay and B. Mercier, A dual algorithm for the solution of nonlinear variational problems via finite

element approximation, Computers & Mathematics with Applications, 2 (1976), pp. 17–40.

[36] E. M. Gafni and D. P. Bertsekas, Two-metric projection methods for constrained optimization, SIAM

J. Control Optim., 22 (1984), pp. 936–964.
[37] R. Glowinski and A. Marrocco, Sur l’approximation, par éléments finis d’ordre un, et la résolution,

par pénalisation-dualité, d’une classe de problèmes de Dirichlet non linéaires, Rev. Française Automat.
Informat. Recherche Opérationnelle Sér. Rouge Anal. Numér., 9 (1975), pp. 41–76.

[38] A. A. Goldstein, Convex programming in Hilbert space, Bull. Amer. Math. Soc., 70 (1964), pp. 709–710.

[39] P. C. Hansen, J. G. Nagy, and D. P. O’Leary, Deblurring images: Matrices, spectra, and filtering, vol. 3
of Fundamentals of Algorithms, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA,

2006.

[40] B. He and X. Yuan, Convergence analysis of primal-dual algorithms for a saddle-point problem: from
contraction perspective, SIAM J. Imaging Sci., 5 (2012), pp. 119–149.

[41] P.-L. Lions and B. Mercier, Splitting algorithms for the sum of two nonlinear operators, SIAM J. Numer.

Anal., 16 (1979), pp. 964–979.
[42] X. Liu, D. Zhai, D. Zhao, G. Zhai, and W. Gao, Progressive image denoising through hybrid graph

Laplacian regularization: a unified framework, IEEE Trans. Image Process., 23 (2014), pp. 1491–1503.

https://doi.org/10.1023/B:JMIV.0000011320.81911.38

26 LUIS M. BRICEÑO-ARIAS & FERNANDO ROLDÁN

[43] R. V. Mises and H. Pollaczek-Geiringer, Praktische verfahren der gleichungsauflösung, Zeitschrift für

Angewandte Mathematik und Mechanik, 9 (1929), pp. 152–164.

[44] C. Molinari, J. Peypouquet, and F. Roldan, Alternating forward-backward splitting for linearly con-
strained optimization problems, Optim. Lett., 14 (2020), pp. 1071–1088.

[45] W. M. Moursi and Y. Zinchenko, A note on the equivalence of operator splitting methods, in Splitting
Algorithms, Modern Operator Theory, and Applications, Springer, Cham, 2019, pp. 331–349.

[46] J. Pang and G. Cheung, Graph Laplacian regularization for image denoising: analysis in the continuous

domain, IEEE Trans. Image Process., 26 (2017), pp. 1770–1785.
[47] T. Pock and A. Chambolle, Diagonal preconditioning for first order primal-dual algorithms in convex

optimization, in 2011 International Conference on Computer Vision, 2011, pp. 1762–1769.

[48] F. Riesz and B. Sz.-Nagy, Functional analysis, Frederick Ungar Publishing Co., New York, 1955.
[49] L. I. Rudin, S. Osher, and E. Fatemi, Nonlinear total variation based noise removal algorithms, Phys.

D, 60 (1992), pp. 259–268.

[50] L. Sha, D. Schonfeld, and J. Wang, Graph Laplacian regularization with sparse coding for image restora-
tion and representation, IEEE Transactions on Circuits and Systems for Video Technology, 30 (2020),

pp. 2000–2014.

[51] R. Shefi and M. Teboulle, Rate of convergence analysis of decomposition methods based on the proximal
method of multipliers for convex minimization, SIAM J. Optim., 24 (2014), pp. 269–297.

[52] R. E. Showalter, Monotone Operators in Banach Space and Nonlinear Partial Differential Equations,
vol. 49 of Mathematical Surveys and Monographs, American Mathematical Society, Providence, RI, 1997.

[53] B. F. Svaiter, On weak convergence of the Douglas-Rachford method, SIAM J. Control Optim., 49 (2011),

pp. 280–287.
[54] A. Themelis and P. Patrinos, Douglas-Rachford splitting and ADMM for nonconvex optimization: tight

convergence results, SIAM J. Optim., 30 (2020), pp. 149–181.

[55] B. C. Vũ, A splitting algorithm for dual monotone inclusions involving cocoercive operators, Adv. Comput.
Math., 38 (2013), pp. 667–681.

[56] M. Yan and W. Yin, Self equivalence of the alternating direction method of multipliers, in Splitting

Methods in Communication, Imaging, Science, and Engineering, Sci. Comput., Springer, Cham, 2016,
pp. 165–194.

[57] Y. Yang, Y. Tang, M. Wen, and T. Zeng, Preconditioned Douglas-Rachford type primal-dual method for

solving composite monotone inclusion problems with applications, Inverse Problems & Imaging, 15 (2021),
pp. 787–825.

[58] X. Zhang, M. Burger, and S. Osher, A unified primal-dual algorithm framework based on Bregman
iteration, J. Sci. Comput., 46 (2011), pp. 20–46.

Departamento de Matemática, Universidad Técnica Federico Santa Maŕıa, Avenida España 1680,

Valparáıso, Chile

Email address: luis.briceno@usm.cl, fernando.roldan@usm.cl

	1. Introduction
	2. Notations and Preliminaries
	3. Convergence of Algorithm 1.2
	4. Split ADMM
	5. Numerical experiments
	5.1. Total variation image restoration
	5.2. Split-ADMM in an academical example

	Acknowledgments
	References

